
NASA Contractor Report 179429

Appli "°*''" of•.,,,,,,,, a Sens_*_v,*,,,,,.,y Ana!,,=_j...s
Technique to High-Order Digital Flight
Control Systems

James D. Paduano and David R. Downing

(lilSl-CJR-179q29) AEEL.ICAT2Gll Ct A N87-2E565
SIISZTI¥1TI ARAL_SI$ TiCHIZGUi IO BIGH-ORDEE

_]6ZTA_ ELIGBT CC_EO[ 5_2_M_ |Kansas

Umiv. Center for Besearch) 1_5 p Avail.- Unclas

|_IS HC A09/HP 801 C$CL 01C G3/08 0098639

Contract NCC 2-293

September 1987

mP A
National Aeronautics and

Space Administration



NASAContractorReport179429

Application of a Sensitivity Analysis
Technique to High-Order Digital Flight
Control Systems

James D. Paduano and David R. Downing

Flight Research Laboratory, University of Kansas Center for Research, Inc., Lawrence, Kansas 66045

Prepared for
Ames Research Center

Dryden Flight Research Facility
Edwards, California
Under Contract NCC 2-293

1987

I,

NASA
National Aeronautics and
Space Administration

Ames Research Center

Dryden Flight Research Facility
Edwards, California 93523-5000



"APPLICATION OF A SENSITIVITY ANALYSIS TECHNIQUE

TO HIGH-ORDER DIGITAL FLIGHT CONTROL SYSTEMS"

Abstract

A sensitivity analysis technique for multiloop flight control

systems is studied. This technique uses the scaled singular values

of the return difference matrix as a measure of the relative

stability of a control system. It then uses the gradients of these

singular values with respect to system and controller parameters to

judge sensitivity.

The sensitivity analysis technique is first reviewed; then it

is extended to include digital systems, through the derivation of

new singular-value gradient equations. These digital-system

gradient equations are a necessary extension to the technique when

real-world systems are to be analyzed. Gradients with respect to

parameters which do not appear explicitly as control-system matrix

elements are also derived, so that high-order systems can be

studied.

A complete review of the integrated technique is given by way

of a simple example: the inverted pendulum problem. The technique

is then demonstrated on the X-29 control laws. The X-29 control

system represents a high-order, digital, multiloop system and, as

such, is a good test case for the technique. Results show that



linear models of real systems can indeed be analyzed by this

sensitivity technique, if it is applied with care.

A computer program called SVAhas been written to accomplish

the singular-value sensitivity analysis technique. Thus

computatlonal methods and considerations form an integral part of

manyof the discussions in this paper. A user's guide to the

program is included in an appendix. SVAis a fully public domain

program, running on the NASA/DrydenElxsi computer.
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I. INTRODUCTION

Most designers of automatic flight control systems (AFCS) model

the aircraft being controlled by assuming that the aircraft's motion

can be described by a set of linear, time-invariant, differential

equations. These equations can be written in matrix form as

= Ax+ Bu , (I.1)

.....= x is a time-varylng vector of aircraft states, such as roll

rate and bank angle, and u is a tlme-varylng vector of commanded

control positions, such as aileron command and rudder command. A

and B are the 'dynamic matrices,' the constant coefficients of the

differential equat_on_.

The commanded control positions u can come either from a pilot

or from an AFCS. In the latter case the commands can often be

modeled as feedbacks of the aircraft states:

u = -Cx. (1.2)

This system is depicted schematically in Figure 1.1. Equations

(1.1) and (1.2) combine to form the closed-loop dynamic system,

vv_A_w....e performance and stability characteristics can be very

different from those of the airplane described by Equation (i.I)

alone, which is called the open-loop system.

In general, the coefficients of the dynamic matrices (A and B)

are not exactly known. Errors in these coefficients are called

modeling errors and are due to two sources: the linearlzatlon of

the nonlinear aircraft dynamics (which yields Equation 1.1), and
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uncertainty about the actual dynamic characteristics of the

airplane. Control system design is intimately concerned with the

effect of modeling errors on the performance and stability of the

closed-loop dynamic system. Methods have been developed to deal

with modeling errors during both design and verification of a flight

control system.

During the design phase, Bode methods [2] have traditionally

been used to insure system "robustness" (in the form of gain margin

and phase margln)--that is, to insure that even if the actual

aircraft is different than the one for which the control system was

designed, the closed loop system will still be stable and have good

performance. Concurrently, efforts are made to identify the model

parameters as accurately as possible, so that the system can be

designed based on accurate information.

During the verification of an AFCS, two methods are usually

used to test the system in the face of modeling errors. Firstly,

the system is analyzed assumlngsome set of parameter variations, to

see if its stability and robustness are adversely affected.

Secondly, and usuall_y subsequently, the actual system is flight

tested in a careful and systematic way to assess its performance.

The methods described above have worked extremely well in the

past, and are still applied extensively in present control system

design. However, modern aircraft are becoming more complex. For

instance, the highly augmented X-29 research vehicle is a 48th order

system longitudinally. Another example is the proposed F-8 oblique



wing airplane, which will be a fully coupled 6-degree of freedom

system, and will require a very high degree of augmentation.

Another complication for classical design resides in the fact that

modern control methods often result in many feedback paths. These

problems, complexity and multiple feedback paths, are not addressed

by the classical techniques for insuring stability and robustness.

This fact is apparent, once again, in both the design and

verification phases of AFCSdesign.

In the design phase, for instance, Bode techniques are only

strictly applicable to single-lnput slngle-output (SISO) systems

[I]. Designers of multiloop systems cannot use Bode measures

without somemisgivings about their validity. Also, identifying the

dynamic model accurately is more difficult for complex aircraft, and

requires costly flight testing. For open-loop unstable vehicles

such as the X-29, such flight testing cannot occur unless an active

control system is augmenting the airplane!

In the verification phase, analyzing the control system in the

face of selected parameter variations is very time consuming, and

invariably incomplete, when the system is of very high order. This

is because the number of parameters and combinations of parameters

which can be varied is very high. Finally, flight testing for

verification can be unsafe, because the control systems being

verified may be necessary to insure adequate stability and

controllability. Early airplanes often still flew if the control

system was flawed; this is no longer necessarily true. The result



is the necessity for costly, lengthy verification before any flight

testing can occur.

Thus many of the accepted techniques for insuring the stability

and robustness of AFC$ have drawbacks in the context of modern

control design. Fortunately, methods have been developed to deal

with these problems. The g0al of these efforts is often to extend

the well-understood classical concepts so that they can also be

applied to multl-lnput multi-output (MIMO) controllers. Many of

these methods are based on the singular values of the control system

return difference matrix, and on the gradients of these singular

values. Robustness measures, some of which parallel the Bode

measures of phase and gain margin very closely, have been developed

in [3] through [6]. Methods for designing robust controllers using

singular values are presented in [4], [7], and [8]. In [8],

Mukhopadyay and Newsom present a design method which uses singular

values and slngular-value gradients.

In [I], Herrera et al. use the results of [8] to develop a

technique to extend classical sensitivity methods to modern MIMO

control systems. By using singular values and their gradients, a

control system, once designed, can be analyzed to determine those

parameters, out of the many that describe the control system, which

affect the stability and robustness of the closed loop system most

dramatically. Identifying these parameters eliminates the need to

identify all the system parameters very accurately. This relieves

somewhat the necessity for intense parameter identification efforts.

5



It also allows parameter-variation type testing to be done in a

systematic and complete way.

The work of Herrera et al. was performed under NASAcontract

NCC2-293,which was awarded to the University of Kansas for the

development of a sensitivity analysis technique for continuous

multiloop systems. The technique resulting from phase one of this

contract is documented in [i] and [9] and consists of computing the

singular values of the return difference matrix and the gradients of

these singular values with respect to model parameters. During

phase one, this technique was applied to several low-order systems,

to determine the characteristics and viability of the method.

This report details the work done during phase two of NCC 2-

293. The primary goals of this phase were to install the software

for the singular value analysis (SVA) technique at Ames Research

Center, Dryden Flight Research Facility, to test it on real systems,

and to familiarize Dryden personnel with the technique and with

singular values in general. To fulfill these goals, several

improvements had to be made to the SVA developed at KU. First of

all, the analysis had to be extended so that digital systems could

be analyzed. In addition, options were added to the software to

deal with problems which arise when one is analyzing complex

systems. Finally, work was done to make the software easy to use.

This report is organized as follows: Section 2 gives a

theoretical background and mathematical derivation of the SVA.

6



Section 3 extends the derivation of the singular-value gradients to

include digital systems. The SVA technique is illustrated in

Section 4 for a simple example of an inverted pendulum. Section 5

presents results obtained for a real system (the X-29) at NASA-

Dryden. Appendix A contains those derivations which are considered

too involved for the text; Appendix B tabulates numerical data for

the X-29; and Appendix C describes the SVA program.



2. BACKGROUND

Thls section reviews the results of Herrera ([I] and [9]).

Section 2.1 reviews the Bode technique, and details the problems

which motivate the use of singular values; these problems were

discussed briefly In the introduction. Section 2.2 then gives a

mathematical description of what singular values represent in the

context of control system design. Section 2.3 elaborates on the use

of singular values as measures of robustness, discussing their

shortcomings and giving some alternate ways to apply them. Finally,

Section 2.4 describes singular value gradients, their derivation and

application. Qualitative results from [I] wlll glve helpful insight

into the SVA in thls and future sections.

2.1 THE I_ED FOR A MULTTLOOP ANALYSIS I_THOD

Figure 2.1 is a block diagram of a typical slngle-lnput,

slngle-output (SISO) control system. The Laplace domain transfer

function g(s) represents the dynamics of the aircraft being

controlled, h(s) Is the control system transfer function; it models

all compensation and feedback gains. The transfer function l(s)

represents any disturbances or variations In the system, either due

to plant parameter variations or controller parameter variations.

The closed loop transfer function of thls system is

I (2.1)
_s) I + igh(s)



PERTURBATION
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CONTEOLLER
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control system with a gain and phase perturbation

at the input

3
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Figure 2.2: Example of a Bode plot with misleading

gain and phase margins
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where u(s) and r(s) are the Laplace transforms of the input to the

open loop system and the input to the closed loop system,

respectively. Both u(s) and r(s) are scalars. Obviously, u(s) will

be unbounded for a bounded input if

lhg(s) " -1. (2.2)

The Bode method checks for closeness to instability by applying a

sinusoidal input, r(t)=sin(_t). [2] shows that this yields the

criterion

11hg(J_)l = i, blhg(j_) = -180 degrees, (2.3)

where J= _ •

When this condition is fulfilled, the system has a pure resonance,

and thus is on the boundary between the stable and unstable regions.

Closeness to instability is Judged by giving i the special form

l=ke j_, which represents a disturbance in both the gain and phase of

the system:

sin(_t) = Imag[e j_t] ,

ksin(_t + _) = Imag[e j_t • ke j_] - (2.4)

Gain margin (GM) and phase margin (PM) are then defined as follows:

= the value of k which causes

condition (2.3) to be met if _=0 (no phase change).

PM = the value of _ which causes

condition (2.3) to be met if k=l (no gain change).

The definitions for GM and PM will only be fulfilled at certain

frequencies. The GM criterion can be satisfied only at frequencies

where Alhg(ju) = -180, and the PM criterion can only be satisfied at

i0



frequencies where [lhg(J_) I = i (or 0 dB). To check for these

points, one must plot lhg(jm) for varying m. The most popular way

to do this is using a Bode plot, but Nyquist diagrams and Nichols

charts are also used for various applications. Figure 2.2

illustrates the definitions of GM and PM on a Bode plot.

One can apply the technique above to multiloop systems, but

only in a limited way. Figure 2.3 illustrates how this is done.

Consider the two-loop control system shown in 2.3(a), where G(s) now

represents a two-by-two matrix of transfer functions, all of whose

elements may be nonzero. This system can be analyzed using

traditional Bode methods by introducing a perturbation i=keJ_ into

one loop of the system. The analysis then procedes as above, with

the assumption that the other loop is a fixed part of the 'open-

loop' dynamics of the plant, as shown in 2.3(b).

Two possibilities are ignored by this type of analysis. The

first is the possibility that the perturbation i may actually

destabilize the h I loop in Figure 2.3. The second is that if the h I

loop varies in some way (gain or phase), and is not fixed as

assumed, the outer loop gain and phase margins may change

drastically.

Taking these kind of possibilities into account is analagous to

avoiding a steep slope in either the gain or phase curve of a

single-loop Bode plot. If, for instance, the phase curve of a SISO

system is steep at the frequency of a shallow gain crossover, a

slight change in gain could cause the phase margin to change

Ii
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b)

u2(s).-. _

u2(s)_ I

f 1

I I

L J

rl(s)

r2(s)

. r2(s)

Figure 2.3: Diagram of classical technique for studying

perturbations in multi-input 'multi-output
systems

Ax

X

1
Figure 2.4: 2-dimensional illustration of a matrix as a

vector transformation
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drastically. This situation is illustrated in Figure 2.2 (this Bode

plot may not actually be physically realizable; it is used here only

as a graphic illustration). Thus a system is not necessarily robust

even if it has acceptable gain and phase margins.

Apparently, a good measure of nearness to instability would

take into account simultaneous changes in gain and phase in al___Ithe

some necessary mathematical concepts are introduced.

2.2 VECTOR AND MATRIX NORMS, SINGULAR VALUES, AND THEIR APPLICATION

The concept of stability in the scalar case presented above

depended on the idea that the input u(s) to the plant should remain

bounded in the closed loop system. For an n-dimensional vector of

inputs, this boundedness criterion can be extended by using the

vector Euclidian norm, defined as

/o
Ixl : Z xi2

i=l

= x/_x . (2.5)

UxU can be interpreted as the length of the vector x in n-space.

Complex vectors utilize a slightly different definition to yield a

If x : u + vj, then the norm is defined as

/o
Ixl : E (ui + vlJ)(u I - viJ )

i=l

: X/_X , (2.6)

"length".

13



where x is the conjugate-transpose of x.

The analysis to be presented also requires the "size" of a

matrix to be quantified in some way. This is easily done by

thinking of a matrix A as a linear transformation, which transforms

any compatibly dimensioned vector x into a vector Ax which has been

stretched and rotated in n-space. The "size" of A, then, can be

thought of as the maximum or minimum possible change in size, or

"stretching factor," that A can cause as a transformation. This is

in fact how the matrix Euclidian norm is defined; mathematically

this is written

max

UAII = or

min

max
or flAil= or

min

IIIAxll/ for all x
Ilxll J

IUAxll) for all x such that lJxll = I .

(2.7)

Figure 2.4 shows the interpretation of this matrix norm in 2-space.

The vector x is allowed to vary in any way, as long as its length

remains unity. As it traces a circle, Ax traces an ellipse. The

maximum and minimum lengths of the resulting vector are the

Euclidean norms of the matrix A.

When the experiment described above is performed on an n-

dimensional matrix a hyperellipsoid (or a degenerate thereof,

depending on the size and rank of the matrix) always results. Now

suppose that in Figure 2.4 we are able to break the transformation A

into a rotation of the axes and a standard equation for an ellipse,

14



2 2
x y (2.8)

1.a

It is apparent that a and b, which are half the major and minor axes

of the ellipse, are the norms of A that we defined in Equation

(2.7). The singular value decomposition breaks the transformation A

up in exactly this way. The basic theorem of the singular value

decomposition is that any matrix A can be represented as USV*, where

U and V are unitary matrices (which means that their transformations

yield no change in length, only rotations), and S is a diagonal

matrix of singular values, which are denoted by oi, i=l..n. The

singular values are half the lengths of the axes of the

hypereilipsoid created by {Az, x: iixii= i}, and the maximum and

minimum singular values, _ and _, respectively, are the matrix

Euclidian norms. Proofs of both the singular value decomposition

theorem and the fact that singular values correspond to norms are

presented in Appendix A, taken from References [i0] and [Ii].

We now have all the necessary tools to conduct a multiloop

frequency response. Figure 2.5 represents a MIMO system, in which

U(s), R(s), and X(s) are vectors and L(s), G(s), and H(s) are

matrices. The equation for the matrix of transfer functions for the

closed loop system has a form analogous to Equation (2.1),

U(s) = [I + HGL(s)]-iR(s)

= TR(s). (2.9)

15
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In this case, however, boundedness will be defined with the help of

norms. The "size" of the input-output relation is given by

nU(s)n gTm(s)U (2.10)

The maximum of (2.10) translates directly into singular values Using

the definition in equation (2.7):

nT_mCs)U UTU = _(T) _[(I 1max flR(s)ll = = + HGLCs)-I] = _[T + gCT(_)] '

(2.11)

where a special property of singular values has been used for the

last equality. This property is proven in Appendix A. Now we can

(I+HGL), which is called the return difference matrix, is zero.

This condition can be checked across the frequency range [3] by

testing the criterion

o[I + HGL(J_)] = 0 (2.12)

for all _ of interest. When this equation is satisfied, a pure

resonance at _ exists. This resonance can be interpreted as a pole

of the closed loop system on the imaginary axis, which means the

system is on the "stability boundary". It is important to note that

singular values, because they are the absolute "lengths" of a

transformation, will always be nonnegative. So if the original,

unperturbed closed-loop system is not on the stability boundary

represented by Equation (2.12), the minimum singular value of the

return difference matrix will be positive, whether the system is

stable or unstable. This situation is analogous to that presented

by the Bode plot, which also gives no indication of stability.

17



If the unperturbed system is stable, norms can be used to

represent nearness to instability. To this end we take L to be a

diagonal matrix whose elements are analagous to the single loop

perturbation i.

J_l J_2 J_n]. (2.13)
L = diag[kle , k2e ,...k en

k i and _i (i=l,n) may vary independently in any way. The system

will remain stable if the following criterion, based on (2.12), is

met: L must be smaller than the smallest matrix J for which

o[l + HGJ(Jm)] = 0 (2.14)

at some m. This is analogous to the gain and phase margin concepts

in SISO systems, except that in the case of singular values, all the

gains and phases may vary simultaneously to achieve the stability

boundary. It can be shown that criterion (2.14) will be met if the

following equation is true:

o[I + HG(jm)] > _(L -I - I) • (2.15)

See Appendix A for the proof of this fact. [3] also shows that it

is possible to rewrite the right-hand side of the above equation in

terms of the maximum values of k i and _i in the matrix L:

_(L -I 11 = /(i 1 2- - _----) + k2-!-- (1 - cOS_max) •
max max

To judge nearness to instability, combine Equation (2.15) and

(2.16) through the following steps:

i. Compute _[I+HG(Jm)] for various _'s. The resulting plot is

called a 'o-plot.' It traces the nearness to singularity of the

return difference matrix, and thus the system's robustness to

(2.16)

18



perturbations, with changing frequency. Note that the
perturbation L need not be knownto compute the m-plot.

2. Determine the minimumof the _-plot. This will be denoted by
£mln" _min occurs at the frequency at which the system is nearest

to the stability boundary.

3. If _[(I + L) -I] < _mln' the system will remain stable. Thus

if all ki and #i are properly bounded by Equation (2.16), the system
will remain stable.

for gain and phase margin evaluation" [3]; this diagram is shown in

Figure 2.6. An example will illustrate its use. If the smallest

_(I+HG) for a system is .6, then the closed-loop system will

tolerate simultaneous gain and phase chan_es of -1.5 dB to 5.3 dB.

and -30 deg to +30 deg, respectively, in all input loops. In a

classical sense, when either gain or phase is changed while the

other is held constant, the margins are -4.2 dB and +8 dB or e35

deg, respectively. The latter results can also be obtained by

alternately setting gain and phase to zero in Equation (2.16),

yielding the following Equations [5,6]:

!
(_4 -

I • _-min

2

PM == _=:bcos-12sin_l(_in)(1 _(-_mln)2 ')I
if _min < 2 ,

(2.17a)

and PM = • 180 if _ ) 2

(2.17b)

It is important to note that Equation (2.15) is a conservative

condition and that it is possible to construct a matrix L which

19
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Figure 2.6: Universal diagram for multiloop gain-phase margin

evaluation (Reference [3])
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violates it, yet fails to drive the system all the way to the

stability boundary. In other words, the minimum of the _-plot is

the slze of the smallest L which wlll drive the system to the

boundary [19], but there are many matrices of the same slze that do

not drive it that far. However, no matrix of disturbances which is

"smaller" than the matrix in Equation (2.15) will destabilize a

the galn and phase changes in the matrix L.

It Is instructive at thls point to give a SISO example to

illustrate the similarities and differences between classical and

_ng,1_r-v_1,,p--h_Rp_ _ech,_q,_es- _or _ RTSO system the ret,_rn

difference matrix is the scalar [I + hg(j_)]. The singular value of

this scalar is simply its magnitude. The frequency response of the

system, on the other hand, is hg(j_), which is a complex number for

each _. Therefore, If the frequency response is plotted on a

Nyquist diagram, as in Figure 2.7, the singular value is simply the

distance from the Instablllty point, -l+0j, to the Nyqulst plot!

Thls characteristic can be seen in Figure 2.9, which is the _-plot

corresponding to Figure 2.7.

GM on a Nyqulst plot is taken at the point(s) where the curve

crosses the real axis to the left of the origin (i.e., L hg(j_) =

-180 degrees). PM is taken at the point(s) where the curve crosses

the unlt circle (i.e. lhg(J_)l = I). In Figure 2.7, the GM occurs

at _ = 2.6 rad/sec and is .34 or -9.3 dB. A PM of +38 degrees

occurs at _ = 19 rad/sec.
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In contrast, the singular value analysis calculates

simultaneous GM-PM limits by finding the point on the curve which is

nearest to the stability boundary of -l+Oj. In Figure 2.7, this

occurs at 27.5 rad/sec. This point can also be found in Figure 2.9;

it is simply the absolute minimum of the curve. It can be seen in

Figure 2.7 that the system will be driven to -l+Oj at 27 rad/sec by

a gain variation of 1.5 or +3.7 dB combined with a phase variation

of 32 degrees. The "size" of this variation corresponds exactly to

the minimum distance from the curve to the -1 point, and can be

found, using Equation (2.16), Figure 2.7, or Figure 2.9, to be .56.

Equations (2.17a) and (2.17b) arise by drawing a circle of

length _min around the -1 point. This must be done because the SVA

provides no information about the direction one must go to get to

the stability boundary. For instance, the curve in Figure 2.8 would

yield the same o_min as Figure 2.7. So to guarantee that the system

will remain stable in the face of any simultaneous variations (NOT

Just the one mentioned above) the gain and phase margins must be

valid for any point on the circle of radius o_min. Thus the

"classical" GM and PM occur where this circle intersects the real

axis and the unit circle, respectively. These values will not

necessarily match those obtained using the true classical

definitions of GM and PM. As can easily be seen in Figure 2.7, they

will be conservative. The conservativeness is much less easy to

interpret in the MIMO case, because Figure 2.7 cannot be
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constructed. Only the information one can glean from figures llke

Figure 2.9 is available.

In an effort to reduce the conservativeness of the galn and

phase margins predicted by Equations (2.16) and (2.17), References

[3] and [6] studied the use of eigenvalues instead of singular

values. The minimumelgenvalue of the return difference matrix will

also be zero when the system is on the stability boundary. Thus a

plot of _ traces the matrlx's nearness to singularity in complex

space. However, no rule like Equation (2.16) is available for

elgenvalues unless the disturbance matrix L is taken to contain only

'uniform' uncertainties. For the uncertainties to be uniform, the

matrix L must have the form keJ_[l]; that is, the gains and phases

along the diagonal of L must vary together, instead of

independently. Reference [6] shows that the universal gain and

phase plot in Figure 2.6 can be applied using the minimumeigenvalue

under the restriction that the gain and phase variations be uniform

as described here.

Reference [i] is an extensive study of o-plots, and includes

several examples which compareMIMO(o-plot) results to SISO (Bode

plot) results. Someof the characteristics of _-plots discovered in

[i], which will becomeevident in future chapters of this report,

are

I) The effects of poles or "modes" of the system can be seen in
m-plots. Usually a dip or peak occurs near the frequency of each
pole of the closed-loop system.

2) As discussed above, it is not possible to determine if a
system is stable or unstable by looking only at m-plots- Only the
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nearness to the stability boundary, and a conservative estimate of
the minimumgain and phase changes necessary to drive the system
there, can be determined.

3) A plot of the elgenvalues of the return difference matrix on
the same graph as the m-plot is a useful addition to the analysis.

Because it is based on a relaxed criterion (that all gains and

phases must vary together), it will always lie above the m-plot.

The conservativeness of the a-plot can be qualitatively Judged by

the distance between the _-plot and the eigenvalue-plot.

4) Some rules of thumb for singular values are:

For a system which will have a multiloop gain margin of

+10dB and a multiloop phase margin of *40 degrees, keep

the m-plot above .684.

A _ of 1 represents a system which is robust in the

optimal sense; it has a gain margin of +¢o and a

phase margin of ,60 degrees.

Because of the way multiloop gain and phase margins are

defined, the use of a +10dB and ,40 degrees rule of thumb may be too

stringent. This rule was probably developed in part to absorb some

of the under-conservatlsm of Bode plots, which do not take

simultaneous changes into account even for slngle-loop systems. It

has been found that a minimum a of .4 - .5 usually still represents

a good design.

2.3 ELABORATION OF THE CHARACTERISTICS OF SINGULAR VALUES

The analysis presented in Section 2.2 has many attractive

properties, but recent work indicates that it contains many flaws

and complications. These will be discussed in detail in this

section so that anyone using the analysis presented in this paper

will be fully aware of the shortcomings and subtleties of singular

value analysis.
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Several of the complications involved with singular values stem

from the unstructured nature of the matrix L in Equations (2.14) and

(2.15). Although a special form is chosen for L in Equation (2.13),

the derivation of Equation (2.15) is valid for any matrix L (see

Appendix A). What this meansis that even if L has non-zero off-

diagonal elements, one can still gaurantee stability as long as

condition (2.15) is met. Non-zero off-dlagonal elements in L

constitute cross-feed perturbations between feedback loops. These

are not part of the definitions used in Section 2.2 for gain and

phase margin, yet Equatlon (2.15) always allows for these type of

perturbations. Thus a morestringent requirement on the size of L

must be met in Equation (2.15) than that indicated by the special

form of L in Equation (2.13). This is another reason (beyond that

described in the SlSO system example of Section 2.2) that the gain

and phase margin predictions in Equations (2.16) and (2.17) are

conservative [19]. Thus elgenvalues, which do indicate the

sensitivity to a truely diagonal perturbation, are a very important

additional tool, although they represent a perturbation that is

somewhattoo structured.

A more drastic consequenceof the unstructured nature of the

matrix L is that the singular values of the return difference matrix

are no____tinvarlant under scale changes [17]. In other words, if the

units of the control power variables or the units of the states are

changed (and the gains in the feedback loops are changed according-

ly, so that the unperturbed closed-loop system characteristics have
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not been altered by the scaling), the singular-value plot can

change. This fact makesobvious physical sense when one considers

cross-feed perturbations: if the units of someof the feedback loops

change, and the signals in these loops are allowed to cross-feed to

other loops, the boundaries on the allowable crossfeed

multiplication factors will change. The upper bound for the size of

the L matrix can thus go up and downwith scale changes, and the

predicted gain and phase margins will change accordingly.

The singular values of a scaled system will always be upper-

bounded by the eigenvalues of the return-difference matrix, which

are invariant under scale changes [17]. The actual or true gain and

phase boundaries as defined by Equation (2.13) are also invariant

under scale changes, because they represent perturbations on each

loop as it feeds back on itself, and so scales are unimportant. But

the singular values will usually underpredict these true margins,

because they are accounting for cross-feed disturbances, which can

destabilize the system very easily if the units chosen for the

system are disadvantageous.

The solution to the problem of the variability of singular

values with scaling depends on the control designer's goal. If he

or she wishes to study the effects of unmodeledcross-feeds (such as

unmodeledcoupling between certain states), then he or she must

choose units for the system such that all channels will have the

samerelative magnitudes during the normal operation of the plant.

This type of scaling accounts for crossfeeds, but between channels
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whose magnitudes are similar. Multiloop gain and phase margins

(Equations 2.16 and 2.17) are not partleularly meaningful here; the

singular values should be interpreted as the allowable 'size' of a

fully populated L matrix. On the other hand, if the designer

desires to look at multiloop gain and phase margins, which are

structured as in Equation (2.13) and do not account for crossfeed

perturbations, then he or she should look for the system scaling

which yields the largest o[l+_G(j_)]ml n. Since diagonal

perturbations will have identical effects on the scaled and unsealed

systems, the boundaries predicted for the 'best possible' sealing

can be applied to th= un_caled system, and a much less conservative

multiloop gain and phase margin will result. It is important to

note, however, that boundarles on unstructured L matrices are valid

only for the sealing under which they are computed [17]; they cannot

be applied to other scallngs of the system, because this would

involve cross-feedlng between feedback paths which have different

relative dimensions than those used when the boundaries were

computed.

Assuming that the system has been scaled appropriately, the

designer can further reduce the conservativeness of slngular-value

plots by looking at the problem in a subtly different way. If in

Figure 2.5, L is replaced by L+I, which represents an additive

perturbation, the stability erlterlon becomes

o[L(s)] < _[I + (Hc)-l(s)] , (2.18)

which, when L has the diagonal structure of Equation (2.13), reduces
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to the gain and phase boundaries [17]

o(L) = /(I -kmax)2 + 2kmax( I _ coS_bmax), (2.19)
or

GM = I _ O_min , (2.20a)

PM --_2sin-l(_omin/2) if o < 2, _180 if Omi n ) 2 (2.20b)

Since these boundaries are also sufficient but not necessary

(which means they are conservative), the information they yield is

complimentary to that obtained from the plot of _o[I+HG]. In other

words, it is valid to use the boundary which is least conservative.

[I+(HG) -I] is called the inverse return difference matrix, and is

easily computed along with the return difference matrix at each

frequency. However, the inverse return difference matrix will not

be utilized in this paper for several reasons. The first is that

the plots of o[I+HG] and _o[I+(HG) "I] tend to be very similar, so

that very little new information is generally gained from plotting

both. Furthermore, unlike _o[I+(HG)-I], _o[I+HG] can be thought of as

a Nyquist plot distance. It lends itself to intuitive

interpretation much more easily. Finally, the gradients of

o[I+(HG) -I] are not yet available. Gradients will be introduced in

Section 2.4 for o[I+HG], and they form an integral part of our

sensitivity analysis procedure. For these reasons _o[I+HG] will be

used exclusively throughout the rest of this paper.

The final complication to the singular value analysis is that

the location of the disturbance matrix L in the control system is

important to the resulting gain and phase margin predictions [18].

This results both from the scaling phenomenon described above, and
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from the fact that gain and phase perturbations in different parts

of the loop actually have different effects. Unlike SISOsystems,

in which the location of the disturbances is unimportant, MIMO

systems can have cross-feed interactions which cause the locations

of phase and gain perturbations to be important. The most important

locations for the disturbance matrix L are the plant input and the

at location 1 in Figure 2.10 yields a robustness measure which is

based on the transfer function between R(s) and U(s) in Equation

(2.9). This is the measure which we have been discussing up to

now. Placing L at location 2 gives a robustness measure based on

the following transfer function, between disturbances W(s) and

inputs to the control system Z(s),

Z(s) = [I + GH(s)]-Iw(s). (2.21)

Alternatively, we can simply analyze the system as if the plant is

the controller and the controller is the plant. In other words,

treat G as H and H as G, and then all the equations for L placed at

location I will apply to L placed at location 2. The details of the

derivations for location 2 will not be discussed, since they are

trivial variations on those for location I. Placing L at these two

points can yield very different stability boundaries, and

sensitivity information subsequently derived can also be very

different. Thus it is important to do the analysis at both points.

At this point, the importance and usefulness of scaling the

system appropriately takes on more meaning. At the plant input the
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scaling should have the goal of maximizing the singular values,

because It is rare for crossfeed perturbations to occur within a

control system. Thus the structured or diagonal form of L is the

most realistic measure of robustness. At the plant output, however,

crossfeeds may occur within the actual plant which were not modeled

when the control system was designed. So, to insure a realistic

measure of robustness at the output, the scaling used should cause

all the states in x to vary within the same range during the normal

operation of the plant.

2.4 SINGULAR-VALUE GRADIENTS

Now that we have a good idea what singular values are and what

they mean, we are ready to understand the usefulness of singular-

value gradients (also known as _-gradients). The term "singular-

value gradients" was adopted from Reference [8], where the matrix

gradients were used in a gradient search design method; here a more

appropriate term might be "singular-value partials" because we

interpret elements of the matrix gradients as sensitivities, or

partials of _ with respect to the corresponding element of the
m

matrix. A more detailed explanation follows.

The goal of a sensitivity analysis is to identify those

parameters, whether they be aerodynamic, control power, or control

system parameters, which most greatly impact the stability and/or

performance of the closed loop system. Since the minimum singular

value, o, is a measure of relative stability, parameters p for which
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_o/_p is large are potentially important parameters. We will

describe "how large is large" later. At any rate, if we can compare

_/_p for all the possible "p's" in the system, we can rate the

parameters in the order of their importance, taking into account

their relative sizes and accuracies. This is the singular-value

analysis which we will now develop mathematically.

Consider the state-space representation of the control system

of Figure 2.5 to be given by

Plant:

= Ax + Bu (2.22)

z = Tx (2.23)

Control Law:

u = -Kz + r (2.24)

Equation (2.22) represents a plant of order N s having No output

measurements, z, modeled by Equation (2.23), and Nc control inputs,

u. Equation (2.24) represents the feedback control law driven by

the sensor output, z, and reference input signal, r. In terms of

transfer matrices (taking Laplace transforms), the control law is

given by

U(s) = -K[T(Is - A)-IB]U(s) + R(s) (2.25)

Therefore, the control input can be written as

U(s) = [I + HG(s)]-IR(s) (2.26)

where H(s) = K and G(s) = [T(Is-A)-IB].

as

Equations (2.22) to (2.24) can be written in an augmented form
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= _ + Bu , (2.27)

u = -_x + r , (2.28)

where A = A, B = B, and C = KT (this notation is used to conform to

the notation in Reference [3]). Then the Laplace transform of the

control input can be expressed as follows:

U(s) = [I + C(Is - A)-IB]-IR(s) , (2.29)

and, therefore, the return difference matrix, (I+HG), can be

represented as

(I + HG) = [I + C(Is - _)-I_]. (2.30)

In the case in which the control law includes controller

dynamics, a similar derivation would be involved [3], but the

computation of A, B, and C , would be different. The A, B, and

matrices can also be found for the case where the loop is broken at

the plant output. The resulting transfer function is between

disturbances at the sensors [W(s) in Figure 2.10] and the output

vector, Z(s). The analysis then proceeds exactly as follows, with

the realization that the elements of A, B, and C may be different

than those for the input case.

The singular values of (I+HG) are oi(s ) , and the corresponding

right and left normalized singular vectors are Vi(s ) and ui(s),

respectively (these are simply columns of the matrices U and V which

Hence byresult from the decomposition of (I+HG) into USV*).

definition

(I + HG)v i I uiai (2.31)
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(I + HG) ui = via i (2.32)

for i I, 2, ... Nc, where W*= means the conjugate-transpose of W.

The normalized eigenvectors satisfy the following orthogonal

properties:

u i vj = _ij and vi vj = _lj' (2.33)

where _ij is the Kroneker delta which is unity when i=j and zero

when i # j.

Let p be a parameter for which sensitivity information is

needed. Differentating Equation (2.31) and (2.32) with respect to p

and then premultiplying the result by ui and vi , respectively, and

adding them together, one obtains

* 8(I + HG) * 8(I + HG)

Ul 3p vl + vl _p

, , 8v i

u t + [u t (I + HG) - v t ai] -f{-+

, , , _ui 3oi , ,

+ (v i (I + HG) - u i ai) _--= _--_ (u I u i + v i vi)
(2.34)

Using Equation (2.31) to (2.33) in (2.34), one obtains

_o. *
• _(I + HG)

x _ I * _(I + HG) + v i (2.35)_p 2 (ui _p vi _p ul)

Notice that the first and second terms in the right-hand side of the

equation are complex conjugates. Therefore, Equation (2.35) can be

written as

_°i * _(I + HG)

3--{-= Real part of [ui 8p vl]

* _(I + HG) (2.36)
= Re [ui _p v i ]
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Using Equation (2.30) and letting

¢ = (Is -i) -i,

Equation (2.36) can be written as

Boi(I + HG)
= Re • tr [,8(1 + CCB) *

8p vlul ]_P

where tr[W] means the trace of W and is equal to the sum of the

elements in the principal diagonal of W.

expanded as

8oi 2% 8_
+ .i.i*l.

Equation (2.38) can be

(2.37)

(2.38)

(2.39)

It is now possible to obtain three expressions for 8Ol/_p, one

for each of the following cases:

I) The parameter p is an element of A, i.e., p : p_

2) The parameter p is an element of B, i.e., p : p_

3) The parameter p is an element of C, i.e., p : p_.

The resulting expressions are

_°i _X
--= Re • tr[C¢ CBviui*] (2.40)

_oi _ *

--= Re • tr[C¢ viu i ]
_P_

3°i tr[_ - ,
_p_ - Re • _-_ CBviu i ]

(2.41)

(2.42)
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By recalling the following matrix operation [12],

[tr{YXZ}]= Y'Z*_._ (2.43)

(where _/_X indicates element-by-element derivatives),

and the matrix trace property [8],

Re.tr(A) = Re • tr(A ) (2.44)

it is possible to extend Equations (2.40) through (2.42) to matrix

form. For A,

8° i 8 *

__ =_ [Re-tr{C_A_B(viu i )}]

-- * -- * *

= Re[(C_) ({Bvlu i ) ] (2.45)

where 8oi/8A is a matrix whose elements are _oi/Saij. Using the

transpose of A simplifies this expression further.

_oi ,_

--= Re[_viu i C_] (2.46)

Similarly, for B,

8o i
Re[(_)* * *- (viui ) ] (2.47)

or using the transpose,

8oi , _

-- = Re [ (viu i )C_ ]_T
(2.48)

and for matrix C,

8°i Re[ T - * *
--_-= I (_B(viu i ) ]

(2.49)
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or using the transpose of C,

_oi ,
__ = Re(_vlu i ) •
BET

(2.50)

Expressions (2.46), (2.48), and (2.50) can be used to evaluate

the singular-value gradients with respect to elements of the system

and controller matrices. Note that the gradients, llke the singular

values, are functions of frequency; thus singular-value-gradlent

plots (or m-gradient plots) can be obtained over a range of

frequencies for each element of interest. Note also that the
|

information necessary to obtain the gradients is already available

from the calculation of the m-plot (if _ is evaluated explicitly).

This is because v i and ui are products of the calculation of the

singular values. Therefore, if one is computing the m-plot, and ¢

is directly available, little additional computational effort is

needed to calculate the m-gradient plots.

To determine the frequency at which a particular K-gradient

plot is most important, we ask the following question: What is the

smallest percentage change in p necessary to drive the singular-

value plot to an undesirabiy low value? If we choose the

"undesirably low value" to be .2 (which translates into a CM of -1.6

to 1.9 dB and a PM of _II.5 degrees), this question can be written

mathematically as

r I

mln rApl mln | _c - _MA /
o<_0<®L pJ = o<_<®/ _o

JL
(2.51)
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Where the "normalized" slngular-value gradient has been employed to

account for differences in the size of different elements. For each

parameter there is a frequency for which the above expression is

minimized.

Graphically, Equation (2.51) finds the frequency and Ap/p for

which the situation illustrated in Figure 2.11 occurs. 2.11(a)

shows the original system m-plot, and 2.11(b) shows a sample

normalized gradient curve for the same system. If the Ap/p found

from Equation (2.51) is introduced, the resulting perturbed-system

o-plot is shown in Figure 2.11(c). The frequency where Equation
m

(2.51) is minimized is the point where the perturbed plot touches

the o=.2 line in Figure 2.11(c). Note that this frequency does not

necessarily correspond to the frequency of the minimum of the

original m-plot.

The SVA approach is to compile a table of parameters,

indicating for each one the minimum percentage change it must

undergo to drive the system nearly unstable. This table is a first

step in determining the parameters that are of greatest

importance. The other steps to be taken are

i) Determine whether the frequency at which the parameter

effects the slngular value is a critical one. If the Ap/p required

is relatively small but not extremely small, and the frequency of

its effect is either very low (such as a parameter which excites a

spiral instability) or very high (such as a structural mode which

the pilot will not be able to notice), the parameter may be judged

to be relatively unimportant.

2) Obtain an estimate of the accuracy of the parameter. If the

system is extremely sensitive to a certain parameter, but that

parameter is known to a high degree of accuracy, then the parameter

is not important.
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3) Determine whether the parameter can vary independent of other

parameters. This is an extremely important point, because elements

of a block diagram which has bee_ augmented to an aircraft often
make up several elements of the A or B matrix, which must change

together. This problem is dealt with in Section 4.

4) Check to make sure that the llnearity assumption made in the

flrst-order approximation shown in Figure 2.11 is valid. If o must

change by more than about 45% in order to reach the minimum a_owable

level, than this approximation is generally not very good [23].

5) Check the sizes of the other singular values (that is, those

that are not the minimum), and o-'_heir gradients. If some of the

other singular values are relatively small and/or there gradients

are large, they must be included in the tabulation of sensitivities.

6) Perform the SVA and steps I) through 5) for the system with

the loop broken at the plant output.

Only after all of the above steps have been taken can a good picture

of the sensitivity to a parameter be determined.

Figure 2.12 recaps the SVA. It must be conducted for the loop

broken at both the plant input and the plant output. First, the

o-plot of the unperturbed system is calculated, along with the

closed-loop system eigenvalues. System scaling should be optimized

at this point, and the scaling chosen should then be used for the

rest of the analysis. The _-plot will tell the designer the minimum

singular value, and therefore the phase and gain margins of the

unperturbed system, using the universal diagram (Figure 2.6) or

Equations (2.17a) and (2.17b). The closed loop elgenvalues must be

calculated to determine whether the system is stable or not. It

must be stressed that the closed-loop elgenvalues are not to be

confused with the elgenvalues of the return difference matrix, which

are plotted against frequency like the singular values. The second
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step in the sensitivity analysis is to evaluate the slngular-value

gradients (m-gradlent plots) for the unperturbed system. These

gradient plots can then be reduced to a table of minimumparameter-

variations required to drive the system to somepredetermined level

of relative stability. This "minimumallowable" level of relative

stability is represented by a minimumallowable value of the _-

plot. The next step is to evaluate the m-plot, closed-loop system

eigenvalues, and any other desired performance measures, for the

system after it has been perturbed by variations in selected

parameters. This final step adds confidence to the analysis.
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3. COMPUTING GRADIENTS FOR DIGITAL CONTROL SYSTEMS

The slngular-value-gradlent equations derived in Section 2 are

for the following terms: _o/_T, _/_T, and _/_T. We will see

in the following section that these equations are valid for digital

systems if A and B are replaced with _ and r, the transition and

discrete control power matrices, respectively. But the c_m_LL_........ of

these matrices have no physical significance; they no longer

represent simple linear combinations of aerodynamic and control

power derivatives. In fact, the gradients with respect to _ and F,

_u/S_ T and 3S/_F T, have no real value by themselves, because none of

the terms of _ and P can vary independently. What one would really

llke to have are the derivatives with respect to the matrices before

discretlzatlon. This requires a new set of equations. These

equations are derived in this section, using extensions of the

theory presented in Section 2.

3.1 THE E_FECT OF DIS_--_ETIZATION ON THE SVA

When a single-rate digital control system is designed, the

continuous plant (including all servo, sensor, and analog control

dynamics) must be discretized. The system

= A x + B u (3.1)
c c

is often discretized using the following equations [16]:

A 2T2 A 3T3

Ac,T T + c + c_( ) = I + Ac 2---_ 3.---_+ "''' and (3.2)
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where

T
r(Bc,T ) = f _(Ac,T)dz • Bc ' (3.3)

O

T = sample time.

The discrete representation of the system is then

Xk+ 1 = _xk + ruk. (3.4)

This discretization is performed so that analysis and augmentation

can be performed in one domain, namely the discrete domain.

Feedback gains and digital dynamics (such as digital filters and

compensators) are then augmented to the discretized model to form

the final form of the control system,

Xk+ I ffi

_k

[ ] Ire1
-c

(3.5)

(3.6)

(Output, or observer, equations are often used in the analysis and

design of these systems; these equations can be reduced to the form

shown above.) Singular value plots can be found for control systems

of this form, as outlined by Broussard [13]. However, the direct

application of the technique for finding singular-value gradients

presented by Herrera [i] and Newsom [8] would find gradients with

respect to the elements of the augmented discrete-system matrices in

Equations (3.5) and (3.6). For parameter sensitivities, we require

gradients with respect to the elements of the Ac and Bc matrices.

The following section derives these gradients, beginning the

derivation with Newsom's results. No new equations are necessary
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for the C matrix gradients, because the gain matrix, which

represents the discrete controller, exists in the real world, and so

gradients with respect to the C matrix are valid. For this reason

the notation for the feedback gain matrix has not been changed. It

should also be noted that for all quadrants of the partitioned

matrices in Equation (3.5) except the upper left-hand corner, the

gradients are still valid. They represent the gradients with

respect to parameters in the digital control system, such as digital

filters and compensators.

3.2 DERIVATION OF THE SINGULAR-VALUE GRADIENTS FOR DIGITAL

SYSTEMS

Because the continuous and digital parts of the control system

are inherently different, the technique of switching their roles to

obtain singular values and their gradients for the case where

disturbances are measured at the output (location 2 in Figure 2.10)

instead of the input (location 1 in Figure 2.10) is not valid. The

nature of the continuous-to-dlgital and the dlgital-to-contlnuous

interconnections must be accounted for. Therefore, in this section,

we present the derivation of the o-gradients for digital systems in

two parts. Section 3.2.1 discusses the __-gradlents for the

disturbance located at the plant input, and Section 3.2.2 discusses

the slgma-gradients for the disturbance located at the plant output.
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3.2.1 Digital Gradients for the Input Case

For now we will assume that no digital dynamics have been added

to the digitized plant (this restriction will be lifted later). The

system, then, is simply

Xk+ 1 = #x k + ruk

uk = -Cx k ,

(3.7)

(3.8)

and Newsom's results (Equation 2.39) are valid for the gradients

with respect to any parameter (here we use a c to denote an element

of the continuous Ac matrix):

8o i
_--a Re • tr[(Cn _-_- nr + cn _r , *,= _a _--) Vi Ul j '

c c C

where: _ = (Iz- O)-I and z = e -sT [13].

(3.9)

(Here we have simply replaced A with # and B with r in Equation

(2.39), and made the adjustments necessary when analyzing digital

systems.) The first step is to evaluate 8#/3a and 8r/_a . The
C C

equations below are approximate, and are taken from Maine and lliff,

Reference [14]. Appendix A gives derivations for these equations.

8A T

_l_a 1c = 2 _( )(0 + I) , where _ = f _(Ac,T)dT;
C O

(3.t0)

_A

arlaa c = _ ¥ )_Bc-
C

(3.11)

These approximations are exact to order _ [14]. Substituting

these expressions back into the original equations and using the

identity F=_B yields
c
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°i Re•t r {I _A
c c

_A- c *
÷ 1) r÷ i }.

c

(3.12)

To this expression we apply the following simplified application of

Equations (2.43) and (2.44):

if 8p/_a = Re.tr [Y(SA/_a)Z] , (3.13a)

then

x ---= I/. • r_

_.i3b)

The matrix expression for the Ac matrix gradient, according to this

rule, is

--__. -- *-- *--
BOi I [(_ + l)_rviui cflY + rviu i c_Y]
_A T 2

c

(3.14)

At this point we recognize the following formulas from Section 2.3:

_oi ,_

B-_- = Re[_Pviui Cn], (3.15)

and

8oi ,_

_--= Re[viu i Cfl] (3.16)

(where A and B have been replaced by $ and F respectively, and _ is

as defined in Equation (3.9)). These equations allow Equation (3.14)

to be further

simplified to

Bo i

T
BA

c

I B°i B°l

--=_ [(_+ I)--+ r-- _.
a_T _rT]

(3.17)

The derivation of 8Ol/Bb c where bc is an element of Be and the

control system is digital is much simpler. Starting, again, with

Mukhopadhyay's Equation (2.39) where B is replaced by r and terms

that are zero have been left out:
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_°i
,= _ Vi ui

C C

(3.18)

we first use the fact that r = to get
C

_o i _( YBc) ,

_T = ca _b viui
C C

(3.19)

and, since _ is not a function of Bc,

_o i 8Bc ,

_T = cay _- viu i .
C C

(3.20)

Finally, using (3.13) and (3.16)

8o i ,_

_B T viu i C_;
C

(3.21)

30i _oi

8B T _rT •
C

(3.22)

It remains to show that these equations can somehow be applied

to the matrices in Equations (3.5) and (3.6), which have been

augmented in the digital domain. To do this, first assume that the

system has been modeled as shown in Figure 3.1, where none of the

digital-to-continuous or continuous-to-digital connections have been

made, but all dynamics are completely modeled. The discretized

continuous plant dynamics have the form

Xk+l = + r"k (3.23)

Yk = HXk, (3.24)

and the digital control system dynamics have the form

Xdk+ 1 = AdXdk + BdUdk
(3.25)

Ydk = HdXd + FdUdk •
(3.26)
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This system can be represented by the completely decoupled set of

matrix equations

.... +

Xdk+l 0 I Ad 0 I Bd

(3.27)

0 I Hd 0 I Fd

(3.28)

Since this section deals with the disturbance located at the input

to the system, the desired transfer function is between the closed-

loop system input and the input to the plant. To obtain this

transfer function, we make the continuous-to-dlgital connections.

ud -- clyk

= C1Hx k. (3.29)

This allows ud to be deleted from the augmented vector

[Uk T I Udk TIT, and Yk to be deleted from augmented vector

[Yk T I Ydk TIT" These vectors have been internalized into the system

by Equation (3.29).

[' .-1[--:77<]=

Equations (3.27) and (3.28) now have the form

If we now let uk = C2Ydk , then this system is in exactly the form

presented in Equations (3.5) and (3.6), with the following matrix as C:
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=-C2[ FdCI H I Hd ]. (3.32)

If the matrices in Equations (3.30) and (3.32) are taken as the

A, B, and C matrices describing the system, then it is apparent

that

O / ac I0 ]

OP.C _ J

-- +--- and
3a

0 I 0

at/aa c 1_a °
c 0

This allows Equations (3.9) and (3.14) to be written as

(3.33)

(3.34)

a_i _(n_) + (_n) Dr
= Re.tr {[(C_)I 8a 1 -_--a]wlul}, and ,

c C C

_°i ' Re{[(, + I)(_), vi,,i*(Ua) , + n,i,,i*(_a)1]_' }
_A T'= 7

c

(3.35)

where the subscripted notatlon indicates that (Cfl), and (_) in

Equation (3.35) have been partitioned appropriately.

Finally, we recognize that the gradients aoi/aA T and aoi/aB T can be

written as follows:

a°i (_')1 .
-- = _'lui *_ = [ -' ] "lul [(c_)II(c_)2]
a_T (_B) 2

r (_) I viui* (_11) III (_I_) I viui* (_I) 2 ]
(3.36)
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_o i ,_

SBT - viu i C_ = viui*[(C_)ll (C_)2] = ['iui*(C_)iI viui*(C_)2] ,

(3.37)

which means that the partitions in Equation (3.35) can be obtained

directly from partitions of SOl/SAT and 8oi/_BT. Combining

Equations (3.35), (3.36) and (3.37) brings us to the conclusion that

Equations (3.17) and (3.22) are valid in the upper left-hand

quadrant of A and the upper quadrant of B in Equation 3.30 if they

are written with the proper partitions of 8oi/8A T and _oi/SB T.

SO _ Re{l [(_ + I)(_)ii + _i(_)i]_ }SAT
c

(3.38)

Note that the following assumptions have been made:

(a) All feedbacks (connections between the digital and the

continuous system) have been made through zero-order holds. That is

why the r matrix appears in the upper quadrant of Equations (3.27)

and (3.30).

(b) The gain matrix C is as defined in Equations (3.32) and as shown

in Figure (3.1). This means that continuous feedbacks must be

defined before the continuous system is dlscretlzed, and no

feedbacks can be defined from digital blocks to other digital

blocks: they must go from the continuous to the digital system.

(c) The continuous system in Equations (3.23) and (3.24) have no

direct llnk; that is, it has no u terms in the output equation.

This is not a restrictive assumption for most real systems.

3.2.2 Digital Gradients for the Output Case

Gradients for the case where the disturbance matrix L is placed

at the output of the plant are obtained by starting with Equations

(3.27) and (3.28), and making the digital-to-contlnuous connections

instead of the contlnuous-to-dlgltal connections. This is done with

the equation
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u k - C2Ydk

= C2HdXdk + C2FdUdk

which causes uk and Ydk to drop out of Equations (3.27) and

(3.28), leaving the system equations

(3.39)

_"<<).k_I_ ol
Yk = i_lol.

['1 1+ - Uk;

Xdk.. L. Bd

(3.40)

If the matrices in Equation (3.40) are taken to be A, and B)

while C is found by letting Udk = ClYk:

=-Clln I 0 ], (3.41)

then the system takes the form necessary to do singular values and

their gradients for the case where the perturbation matrix L is

placed at the plant output. For this case the derivatives of A and

take on a slightly different form:

a*/aac I [_r/_acC2Hd)]
8_. -. , and

"r_"7:_: o I o

"_e = 0 "

Plugging these results into Equation (2.39) and using the proper

(3.42)

(3.43)

partitions of the matrices gives

_a = Re'rE {{[('Cl'l) l _}dl) I _-- _ I (Ci'l) l _ BcC2Hd ]

c c l c (_)2

_¥ *
+ (Ca)l _-a BcC2Fd}VlUi } '

c
(3.44)
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which is easily reduced to

_o.
1

8a - Re • tr {[(C£)1 _ (£B)I + (_£) _¥8a 1 _a- BcC2Hd(_)2
c c c

+ (C_)I _a BcC2Fd]Viul } (3.45)
c

Substituting in Equations (3.10) and (3.11) for 3¢/_a and _r/_a
C C _

£}o. _A _A

1 {½ 1 c c@a - Re • tr [ _'-a (¢ + I)(_)1 + (C£)t_-_-a WBcC2Hd(S_)2
c c c

_A
c *

+ (C£)1 _ _BcC2Fd]Viu i }-
c

(3.46)

Finally, we apply the rule in Equation (3.13) to obtain the matrix

solution.

Rei_ [(_ +yf-= I)(_)lViUi*(C£) l + YBcC2Hd(_)2viui (C£)

+ TBcC2FdViU i (C£) 1]T} (3.47)

Now, although the A, B, and C matrices are very different from those

in Equations (3.36) and (3.37), their singular value gradients can

be partitioned in exactly the same way. Doing this allows Equation

(3.47) to be written in the very simple form

_A_°T = Re{l [(0 + I)(_--_)II + AI2(_AT)21
c

(3.49)

It is interesting to note that these equations will also apply to

the loop broken at the input case, although they must be applied to

a completely different set of matrices! The second term in Equation
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(3.49) will be zero for the input case, which causes it to reduce to

the partitioned form of Equation (3.17) suggested at the end of

Section 3.2.1.

Unfortunately, the Bc matrix gradients do not exhibit similar

behavior; the output case requires a different equation to be

derived. Since F appears in both the A and the B matrix, the

following matrices must be plugged into Equation (2.39):

_B

(3.5o)

_B

_--_ C2F d
ai c
_b = 0

c

. (3.51)

When this is done, and the matrices are reduced in a fashion

analagous to that used in the derivation of _ol/Sac, the following

equation is obtained for 8oi/SB c :

8o1

T
8B

c

_oi _oi
(3.52)

The assumptions of Section 3.2.1 apply here also, with the

exception that in this case all feedbacks must go from the

continuous to the digital system, instead of from the digital to the

continuous system.
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4. APPLICATION OF THE SVA TO A REPRESENTATIVE EXAMPLE

Sections 2 and 3 provide all the information necessary to do

sensitivity analyses with respect to elements of the matrices

A, B, and C. In this section, the singular value analysis technique

is illustrated using a simple example. This example will point out

the necessity for a slight extension, to allow sensitivities to be

performed with respect to parameters which do not appear explicitly

in A, B, or C.

4.1 AN INVERTED PENDULUM WITH A DIGITAL CONTROLLER

Consider the inverted pendulum example from Reference [15],

pictured in Figure 4.1.

The pivot of the pendulum is mounted on a carriage which

can move in a horizontal direction. The carriage is driven

by a small motor that at time t exerts a force B(t) on the

carriage. This force is the input variable of the system.

Figure 4.2 indicates the forces and the displacements. The

displacement of the pivot at time t is d(t), while the

angular rotation at time t of the pendulum is 8(t). The mass

of the pendulum is m, the distance from the pivot to the

center of gravity L, and the moment of inertia with respect

to the center of gravity J. The carriage has mass M... F

represents the friction coefficient [of the carriage]

See [15] for details on the derivation of the equations of

motion. If the following variables are introduced:

L' = (J + mL2)/mL; (4.1)

_l(t) = d(t) + L'8(t); and (4.2)

_2(t) = _l(t); (4.3)

then the following matrix equations approximate the system:
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Figure h.l: "An inverted pendulum positioning system" [15]

d

V

pivot

mg

Figure h.2: "Inverted pendulum: forces and displacements" [15]

59



1 0 0

-F/M 0 0

0 0 I

0 g/L' 0

r w m

o I
I

d I
+ ] _,

o I
I
I

_2 0 i
!

.... (4.4)

To this system we add a continuous actuator whose dynamics are

given in transfer function form as

BW

s + BW ' (4.5)

and we employ a proportional-plus-integral control law, implemented

using a digital controller, to stabilize the system. See Figure

4.3. A digital lead-lag compensator will be used to enhance the

system's stability and robustness.

This control system was chosen because it contains dynamics in

both the discrete and the continuous domain. Also, the digital

lead-lag provides a point of interest for sensitivity analyses

because its pole- and zero- locations have not been optimized, so

more robustness might be available if they are adjusted. Finally,

this system is sufficiently complicated to illustrate many of the

characteristics that are found in high-order linear models of real

systems.

To study this control system, the A, B, and C matrices must

first be found. This will be done explicitly here, because it is

important to realize how control system parameters get combined into

matrix elements. Computer programs to find A, B, and C given a

block diagram are readily available.
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Since the control system in Figure 4.3 feeds back 8 and its

integral, this state must be reconstructed from the states in

Equations (4.1)-(4.3).

_I = d + L'8; (4.3)

.'. 8 = 1/L'[ -d + _1 ]. (4.6)

Equation (4.6) will be used in the development of the state matrix

equations of the control system.

The first step in developing the state matrix equations is to

add the continuous dynamics to the basic plant dynamics. The

continuous dynamics in Figure 4.3 are the servo and the

integrator. Each of these blocks will add an extra state to the

state vector x.

The servo will be modeled as a first order filter coupled

with a gain. (This method is used to conform to the methods of the

program CONTROL, which is used extensively at Dryden Flight

Research Facility, where these studies were carried out.) The new

state variable will be called _, and the new control variable will

be called _:

s +BW

1
= s + BW _ ' so (4.7)

_s + BW_ = _ . (4.8)
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Taking the inverse Laplace transform of Equation (4.8) yields the

equations necessary to augment _ to the control system.

=-BW_ + _ ; (4.9)

ffiBW_. (4.10)

The integrator block is added in a similar manner, as follows, using

Equation (4.6):

= I e ; (4.1i)
s

6s = 8 ; (4.12)

!
= 8 --_r [_I - d]. (4.13)

The continuous dynamics are now completely modeled by the following

equations:

A

0

0 I/L' 0

(4.14)

-- A
c

These matrices are next digitized, using Equations (3.2) and

(3.3), so that the states are only known at the sample instants.

Sample instants are spaced T seconds apart. The values of the

states at each sample instant are indicated by the index k, and the

state equations are reduced to the following matrix difference

equations:
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_k+l| = _(Ac,T) _k + r(sc'Z) _'

_k+lJ _k

where the transition matrix _(Ac,T ) and discrete control-power

matrix F(Bc,T) are defined by Equations (3.2) and (3.3).

The state variables and matrices are now in the 'digital

domain,' so the dynamics of the lead-lag filter and the feedback

gain matrix can now be added to the system. The lead-lag filter

reduces to difference equations using the methods of Reference 16.

First, a new state variable, _, is defined. The input to the block

is 8, and the output of the block is _, as shown in Figure 4.3.

(4.15)

e Izzl

= 1 0 ; (4.16)

z - pp

a(z- p) = O;
P

az = O + ppa .

Taking the inverse z-transform of (4.18) yields

ak+ 1 = 8k + Ppa k

l 1

= - _T dk + _T _ik + Ppa k-

The feedback equation is

== C[) ,¢k K1 (az - Pz

(4.17)

(4.18)

(4.19)

(4.20)
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which, taking the inverse Laplace transform and applying Equation

(4.19), reduces to

_k = K1(°_+I - Pz°_ )

= KI[_ _I dk + _I {1k + (pp _ pz)a k].
(4.21)

The second feedback equation is simply (see Figure 4.3)

" K26 (4.22)

or, using the inverse z-transform again to get the difference

equation,

{k = K26k" (4.23)

Combining Equations (4.15), (4.19), (4.22) and (4.23) yields the

difference equations for the entire system.

dk+ 1

dk+ 1

_Ik+ 1

_2k+ 1

*k+l

6k+ l

ak+ 1
I-

0

I _k

Io
Io

Io
!
L_ ol o Io1%

r

o,.1-',+o ,,+ o o o
;L0 0 0 0 0 K 2

. .

dk I

I

I
_Zk

¢2k + I

*k I

6k I

% o I o

_1(%" ",)] _l

0 J 6k I

P
%

(4.24)

where @ = exp

0 I 0 O

o £ o o
M

0 0 0 I

o -bo
0 0 0 0

1
0

L'

0

Bw_

0

0

-BW

0

0-

0

0

0

0

0

and r -

m

0

0

0

ro

1

0
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This example has been executed in great detail to illustrate

the point that often, even when the system is simple, the physical

variables are not directly related to single matrix elements. For

this reason, a slight extension to the singular value sensitivity

analysis is required to get results which are useful. To

illustrate, the following sensitivities will be performed:

_c _c _c _c

_p'---z ' 8K---_' _ ' and _--_'_" •

To compute these derivatives, one simply needs to compute the

first-order Taylor series expansion using Equation (4.24).

--=_Pz -KI _c17 ;
(4.25)

- I - i -

aK--_= - _-r _ + _-r 8c13 (Op - Ok) --"aCl7'
(4.26)

8c 80

_-gL--r = -_, 2 +

80 8c 8o 8c 80

8_71 8a63 8a73 + g _a41 g "8a43

+ K 1 _Cll KI ]; (4.27)

8c 8c 80

8BW M 8a25 _a55
(4.28)

The first-order Taylor series expansions in Equations (4.25),

(4.26), and (4.28) are exact. This is because the reduction of the

block diagram in Figure 4.3 into state-space form required only

linear combinations of block parameters and state-space elements.
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No generalization of this result is attempted here, but experience

indicates that if the denominator polynomials in the block diagram

blocks have leading coefficients of one (or if the leading

coefficients are never chosen as sensitivity parameters), then the

vast majority of the elements of the A matrlx are simple linear

combinations of block diagram parameters. Thus if one chooses

elements that actually appear as either matrix elements or block

diagram polynomial coefficients, a flrst-order approximation will

usually be exact. Equation (4.27) is inexact because L' appears as

an inverse everywhere; it is not a state-space element per se. The

approximation in Equation (4.27) will be accurate as long as L' is

not near zero.

The general form for the equations presented above, when

applied to any term in the block diagram describing the system (or

any other parameter) is:

=E +E --+E
ap ap aaij ap abij ap acij

(4.29)

This equation has been implemented in the singular-value analysis

program. The user must supply

_ andaCij
ap ' ap ' --_"

for all appropriate i,j as inputs. For the studies in Section 5,

these derivatives are computed using a modified version the program

CONTROL, which computes the coefficients in Equation (4.29).

Equation (4.29) has been found to be exact for all the parameters
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which will be studied in section 5, because of the linearity (for

many terms) of the transformation to state-space form. The terms

8c 8c 8c

_aij _bij and _cij

in Equation (4.29) are simply elements of the matrix gradients

8c 8c 8c

_ and _ •
_xT' _T' _C

The equations for these gradients were derived in Sections 2 and 3.

4.2 STEP-BY-STEP APPLICATION OF THE SVA

Equations from subsection 4.1 as well as Sections 2 and 3 must

be combined to do the singular value analysis. Once the gradient

plots are computed, some method for organizing and presenting the

results is necessary, because of the large number of plots

generated. In this subsection, the procedures used by the program

SVA are delineated step-by-step to bring together all the necessary

components from the previous sections. The inverted pendulum

example will be used to help clarify the details of the analysis.

4.2.1 Setting up the Matrices

A complete robustness analysis of a control system requires

that the singular values and their gradients be computed at both the

plant input and the plant output (or, equivalently, at the plant

input and at the controller input). This simply means that the
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analysis must be done for two sets of the matrices A, B, C. In this

section we will present how these matrices are constructed. In

Sections 4.2.2 and 4.2.3, all the steps are the same whether the

system Is being analyzed for robustness to uncertainty at the plant

input or at the plant output (controller input). Thus no

distinction is made between the two cases in these sections; any

A, B, and C will do. The only exception is that gradients with

respect to B matrix elements are different for the input and output

cases when the system is digital, as discussed in Section 3.2; this

exception will be noted below. Section 3.2 presents a detalled

explanation of how the A, B, and C matrices must be formed when the

control system is digital. For the continuous case, if the system

Xp ffiApXp + BpUp (4.30)

is described by the equations

PLANT:

yp ffiHpXp + FpUp

AUGMENTATION: Xa ffiAaXa + BaUa (4.31)

Ya ffiHaXa + Faua

ua ffiCIY p

Up = C2Ya,

INTERCON_ECTiONS: (4.32)

and if all dimensions are compatible , the necessary matrices for the

input case are

IAp°I
BaCIH I Aa BaCIF p

ffi -(I- C2FaCIFp)-I [ C2FaCIHp I C2H a ];

(4.33)

and the necessary m_trlces for the output case are
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[,BCHa]ICF1
0 I A a [ Ba (4.34)

= -(I - ClFpC2Fa)-I [ CIH p I CIFpC2H a ] •

Note that the minus signs in front of the C matrices arise from the

fact that the analysis assumes negative feedback.

To "scale" the system, one simply needs to introduce a scaled

input vector Us,

Us = Du.

where u is the control input vector for the total system: Up in the

input case and ua in the output case. D, the scaling matrix, should

be square and invertable (it is also desirable for D to be real and

diagonal, to preserve the intuitive idea of changing the "units"

being used, although References [17] and [20] suggest 'optimum'

scallngs which do not preserve this notion). D can be introduced

into the control system by letting u=D-lus as follows:

x = Ax + BD-Iu ;
s

D -lu = -Cx, or
s

U ffi -DCx.
S

Thus the analysis can proceed as usual, with the scaled system

represented by A = A, B = BD -I, and C = DC. It is easily
s s s

verified and intuitively obvious that the closed-loop properties of

the control system are unaltered by this type of system scaling.

However, except in the case of diagonal perturbations, the singular-

value robustness results from a scaled system are valid only for

that system [17]. On the other hand, along the diagonal of the
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perturbation matrix L, since scaling can not effect the allowable

multiplication factors, singular value results obtained from the

scaled system are valid for the unscaled system (see Section 2.3 for

a complete discussion of scaling).

4.2.2 Computations at Each Frequent 7

To get a plot in which m is the independent variable, the

gradient matrices and partial-derivative expansions must be computed

at each m. This is a repetitive process; the same steps are

followed for each value of _. We present the computation for one

value of _, for a digital system.

A> Let z ffieJ _T fficos(_T) + J.sin(_T).

B>

C>

D>

Compute _, where

= (Iz - X)-I. (4.35)

Compute the return difference matrix for the control system,

RDM = (C_B + I). (4.36)

Perform the singular value decomposition on the return

difference matrix. The resulting matrices are S, a diagonal

matrix of singular values, ordered from largest to smallest;

and U and V, the matrices containing the right and left singular

vectors. The columns ui and vi of U and V respectively

correspond to the oi = sii in the matrix S by the following
equations from Section 2:

(I + HG)v i ffiuio i ; (2.31)

(I + HG) ui ffirio i • (2.32)

E> Extract on,FoUr and Vn, where n ffithe dimension of the square
matrix A. the pendulum example, n = 7. Since the oi are
ordered from largest to smallest, o = o.

n
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F>

G>

Computethe gradients of the digital-domain matrices using the
equations from Section 2.

8AT _[RBVnnU CR] ;
(2.46)

8_0 ,_

8BT Re[VnUn Cf_] ;
(2.48)

8o
= Ro[_Bv u ] . (2.50)

8_T n n

Extract the necessary quadrants of 8o/8AT and 8o/8BT, and
T which wereuse them in the equations for 8o/8A and 8o/8B- c - c

derived in Section 3 (A and B_ for the pendulumexample
appear in Equation 4.14_. ForCSo/SB_, the necessary equation
depends on whether the L matrix _s a_ the plant or controller
input.

for L at the plant input,

(3.49)

8o 8o
"-'-_ -- ,
8B 8B

c

and for L at the plant output,

(3.22)

8o 8o 8o

" [CzFd I + CzHd 21 ]_ "
8B

c

(3.52)

The gradients 8o/8C T are valid without changes.

H> The matrices in Equations (3.49), (3.22), and (3.52) are of the

same dimensions as the quadrants which were extracted in from

8_/8A T and 8_/_T in step G. Insert the results of step G into

the matrices computed in step F. The resulting matrices contain

all the physically significant sensitivities, and are

illustrated for the pendulum example in Figure 4.4.
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Do

X

X X X

Do Do

I

X X X X X X

8a Do

-_ X X -BW X

8(- 2(-w)

X X X

X X X X

X X X

Do

x _ x

20 20

X X X X

X X X X X X

Figure 4.4: Results of the singular value anaysis when applied

to the pendulum example

(X = this element contains a gradient with no physical

significance.)
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I> Construct the desired gradients using Equation (4.29)

B

_p = r _p _aij + I _p _bij + r _ _cij (4.29)

The results of going through steps A> through I> at each _ for

the pendulum example will be presented in Section 4.3.

4.2.3 Data Reduction of the o-Gradlent Plots

If we repeat the steps in Section 4.2.1 for a range of _'s, we

will end up with m-gradient plots for all the parameters of

interest. The next step is to construct a table of the parameters

in their order of 'importance,' and to display enough information so

that the table can be interpreted. To construct this table, we must

search the frequency range to find the frequency at which each

variable exerts its strongest influence. Again we present a step-

by-step procedure.

A> For each parameter, perform the following steps:

(I) At each frequency, compute the Ap/p (or percent variation

in p) required to drive _(_) to some minimum allowable

(_MA)

_P= (4.37)
P

gTp• P)

(2) Find the minimum Ap/p for all m.

74



Steps (I) and (2) are simply the application of Equation (2.51)

(2.51)
0<_<® 0<_<®

B> Compare the Ap/p's for each parameter to set up the table.

The resulting table contains the following information:

2) The frequency at which it exerts its strongest effect

3) o at this frequency

4) _a/(_p/p) , the 'normalized singular-value gradient,' at the

freqency in column 2. The normalization is performed so that

different parameters can be compared to one another.

5) The Ap/p, in percent, required to drive the _-plot to _MA at
the frequency in column 2, as shown in Figure 2.9.

6) The percent variation in a needed (at the frequency shown in

column 2) to drive it to _MA" This column helps to identify

when the llnearity assumption might _ invalid.

The table described above is very useful when many parameters

must _ compared; however the _-gradient plots still contain vital

information and should not _ overlooked, as we will see in the next

section.
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4.3 APPLICATION OF THE SVA TO THE PENDULUM EXAMPLE

The results of conducting the analysis described in section 4.2

are presented in this section for the pendulum example, given the

plant and controller characteristics given below.

plant: controller:

F/M = i s-I K1 = 70

I/M = I kg -I K2 = 13

L' = .842 m Pz = .8

g/L' = 11.65 s-2 pp = .I

BW = I0 rad/s

Section 4.3.1 discusses the _-plots for this system, and the effects

of scaling on it. Section 4.3.2 gives examples of _-gradients.

4.3.1 o-Plots for the Pendulum Example

Figures 4.5 and 4.6 are the o-plots for the unscaled system.

Figure 4.5 measures robustness to uncertanties at the plant input,

while Figure 4.6 presents robustness at the plant output. The fact

that these plots are very similar is in no way typical; it probably

stems both from the simplicity of the control system, and from the

fact that there are only two plant outputs and one plant input. The

low order of the system also accounts for the fact that there is

very little difference between the singular values and the

elgenvalues.
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Figure 4.6 : Plot of i) minimum singular value and 2) minimum

eigenvalue for the pendulum example (unperturbed control
system); output node
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The robustness of this system would be considered unacceptable

for most applications, even if scaling could be used to drive the

minimum singular value up to the level of the minimum eigenvalue.

Nevertheless, we will use this case to illustrate the technique and

effect of scaling.

At the plant input, the scaling should be chosen so as to

maximize o across the frequency range. To this end, we plot o for D

matrices of the form

where d takes on various values. This scheme is general enough to

allow all real, diagonal scallngs to be studied. Figure 4.7 shows

the results for d= .25, .5, .714, 1.25 and 2.5. It can be seen that

in this example, very little improvement in Omi n is available from

this type of scaling. In some cases, however, drastic improvements

can be achieved in this way [17].

At the output, the scaling should be chosen so as to normalize

the output magnitude. For instance, by looking at the time

histories of our baseline pendulum example control system design, we

can choose a scaling D which will cause the scaled outputs, 8s and

6s, to vary between zero and one for a 5 degree initial condition on

O. This scaling is

1.595

which reflects the ,mximum magnitudes of 8 and _ in a time history.

79



1.0
I I I I II11 I I I I III1

.8

LLI

.J

>
Z
ILl
(.9
H .6
tU

r_"
(3

I.IJ
:)
_1
E
>

.,4.
rr

Z
H

I I IIIIII
I I I I IIII
I I IIIIII
I I I I IIII
I I IIIIII
I I tlittl
I t I I I11t
I I tillil
I I I i l lll
I I Illlit

I I I I IIII
I I I I II11
I I I I IIII
I I I I IIII
I I I I IIII
I I I I till
I f f I fill
I I I I I Ill
I I I I l lli
I t IIItil

.2

I II
I II
I II
I II

IIII
IIII
IIII
IIII

I I
I I
I I
I I

I I IIII
I I IIII
I II III
IIIIII

I I I IIIII
I t [ I IIII
I I I I till
1 I I t ilti
I I I I till
I I Itllll
i I iltlll
I I I I IIII

.... ' ° '" !

I I I [llll
I I IIIIIt
I I Ilfllll

' ' '"r!lI I III

I I III TI1 I [li!j
i I llllll I I I I_lll J I I llliL_
I t IIIIII I I I tllll I I I tt P_

i, t t,lll WI ] t,lJt I I I I I_-II!I I IIIIII I I I IIIII I I I _ I

I I I IIIII I I I IIIII I I I
I I I IIlll I I I IIIII i I I
I I I I IIII I I I l llll I I I
) ) )))))i l ) )wIii) I I ! iiI)
I I lllIII I 1 I i lill t I ll*_li/iiI I ;,llll I i I;lll, I I VItU,I
I ! ; ;Ji ;/Ill
,, , i  I/Irijl...... i i ir'r¢,) x

I I INL:: till

) , ) ,),,) ) T, ,) ,''u-_',,,I IIIII

_=O.?i_, '_...... I I
l llllll I

I 0 llllll I
I d=O. _ I I

i _=o.25 i i _ _,_ _ _ _[ _
I I I I IIII I I I IIIII I I I IIIII

I0-I I0° i01
FREQUENCY (RRD/SEC)

I//I I tilt]'
I// I I tl_ll

!/_ I I IIIII
I//T 1 I Illll

I//I I t It fll
II/I I f I fill

I I IIIIII
I I IIIIII
I I I IIIII
I I I IIIII
I I IIIIII
I I IIIIII
I I IIIIII
I I I I I III
I I IIIIII
I I I I IIII
I I IIIIII
I I I I IIII
I I I I IIII
I I IIIIII
I I I IIII!

I I IIIIII
I I IIIIII
I I I I IIII
I I IIIIII
I I I I IIII
I I I IIIII
I I I I IIII
I I I I I III

I I IIIIII
I I I I IIII
I I IIIIII
I I I I IIII
I I IIIIII
I I IIIIII
I I I I IIII

).02

Figure 4.7: o-plots at the input node of the pendulum example

for various scalings. %__-plot is included to show
that it is an upper bound.
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More complex systems would be more difficult to scale, because

relative output magnitudes depend on the maneuverbeing performed.

The main purpose in this type of scaling is not to account for all

possible maneuvers, but to normalize out the effects of large

differences in units. In this case, as seen in Figure 4.8, the

system actually looks more sensitive when the system is scaled

(compare Figure 4.6). Since this plot indicates sensitivity at the

output, Figure 4.8 might indicate the need for very accurate

measurementdevices, with very little noise, for this control

system. The fact that an integrator would probably be used to

implement the measurementof _ (see Figure 4.3) would probably solve

this problem, since the scaled system puts more emphasis on 6 than

does the unscaled system.

4.3.2 o-Gradlent Plots for the Pendulum Example

The _-gradlent tables (at the input and at the output) for the

unscaled pendulum example are given in Tables 4.1 and 4.2. They

result from applying the steps of Section 4.2. _-gradient plots for

the parameters L', KI, Pz' and BW are shown in Figures 4.9 and 4.10,

for the input case.
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Figure 4.9: Plot of the singular value gradients with respect

to I) proportional gain (KI) and 2) compensator

zero location (-pz) for the pendulum example
(unperturbed control system) input node
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Figure 4.10: Plot of the singular value gradients with respect

to I) pendulum characteristic length (L') and

2) servo bandwidth (BW) for the pendulum example

(unperturbed control system) input node
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Table 4.1:

param.

Parameter sensitivities for the pendulum

example at the input node: variations

necessary to drive _min to .06 (half the
original value)

_ 1.33 .12 2.10 -3%1.62 .12 -.56 11%

BW 2.15 .12 .13 -49%

L' 3.83 .23 .26 -66%

AO

-52%

-49%

-51%

-74%

Table 4.2: Parameter sensitivities for the pendulum

example at the output node: variations

necessary to drive _min to .06 (half the
original value)

param.(p)

Pz 1.33
KI 1.62

BW 2.15

L' 3.83

.13 2.25 -3% -53%

.13 -.62 11% -52%

.13 .14 -53% -55%

.26 .27 -73% -77%

Definitions:

param: Parameter for which gradient has been taken

_min : Frequency at which this parameter has maximum effect

_(_min): Singular value at _min

_/( _p/p): Singular-value gradient at _min

Wp: Percentage change in p necessary to drive _min to .06

A_: Percentage change in _ necessary at _min to get to .06
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5. APPLICATION OF THE SVA TO AREAL SYSTEM

This section is devoted to applying the results of the previous

sections to the linear model of a real system. Section 5.1 compares

K-plots with frequency response results. Section 5.2 presents some

K-gradient results and compares them to other sensitivity results.

In this section, the issues of scaling and of output singular values

and their gradients are not addressed. Scaling is not necessary in

the cases presented here because the singular values are very close

to the eigenvalues in the critical frequency ranges. Output

singular values are not presented here because the intent is not to

do a complete analysis of the control system, but to demonstrate the

feasibility of applying the SVA to real problems.

5.1 o-PLOTS APPLIED TO AREAL SYSTEM

References [I] and [3] discuss the differences between

classical PM and GM and the PM and GM obtained from K-plots. Both

references compared SISO (classical) and MIMO (g-plot) stability

margins for low-order systems. In this section, similar comparisons

will be done for two high-order control systems, which together make

up the linear model of the primary flight control system of the X-29

Advanced Technology Demonstrator.

The two systems we will use are the lateral-directional and the

longitudinal control systems for the X-29. They both represent a

high degree of augmentatlon; and, in the primary mode, they are both
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digital. The linear model for the longitudinal aircraft dynamics,

with actuators, sensors, and control laws, is 48th order. The

lateral-directlonal model is a 35th order system. Appendix B

contains geometric data and dynamic matrices for the X-29.

5.1. I X-29 Longitudinal Hode

Figure 5.1 shows a simplified block diagram for the X-29

longitudinal mode. The o-plot will be computed for the system with

the control loops "broken" at each of two locations. At point A in

Figure 5.1 the system is SISO. At point B it is MIMO. By analyzing

the _-plots of the system at both of these points, and comparing the

results to a classical Bode analysis, some idea can be formed about

the additional conservativeness introduced when a system is analyzed

in a MIMO sense. "Breaking" the loop at a different point primarily

effects how the C matrix, the feedback gain matrix, will be defined.

The Bode analysis can of course only be applied to the SISO system.

It is interesting to note that in this special case (i.e., the

system branches from a single channel into multiple channels), the

eigenvalue-plot (or _-plot) of the MIMO system should match the o-

plot of the SISO system exactly. This is because L-plots measure

relative stability when the disturbances are uniform; i.e., all

loops change in gain and phase simultaneously. This is exactly the

effect that breaking the loop at the SISO point has: the

disturbances at the three separate loops will be equal.

Figure 5.2 is the _-plot for the SISO system, for the X-29 at

15,000 feet and a Mach number of .9. The _-plot of this system is
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Figure 5.2 : Singular value plot for the X-29 longitudinal mode

at M=.9 and H=15,000 ft., with the loop broken at

point A in Figure 5.1
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the same as the L-plot, because SISO disturbances are necessarily

uniform. Figure 5.3 is the _-plot/L-plot for the MIMO system at the

same flight condition. Note that the upper plot, the L-plot, is

identical to Figure 5.2. The frequency response of the SISO system

is shown in Figure 5.4. The gain and phase margins from Figures 5.2

through 5.4 (computed using Equation 2.17) are tabulated in Table

5.1. It can be seen that the MIMO analysis, which yields the

results in the _min column, is not much more conservative than the

SISO L-plot analysis in this same column. Both analyses, however,

yield conservative results when compared to classical results. This

is because the _-mln must be interpreted as a boundary for gain, for

phase, and for galn-phase combinations. One of these three is the

worst case, but the same measure is used for all three, yielding

conservative results. If, however the GM and PM equations are

applied at the crossover frequencies of the Bode plot, fair

agreement is achieved between all methods (see Table 5.1). In fact,

the eigenvalue plot is exactly right, except where it is equal to

one. This indicates that although the conversion of _-mln to

multiloop gain and phase margins is conservative, the _-plots and %-

plots themselves are giving a true picture of nearness to

instability. For example, the SlSO o-plot indicates that the worst

case occurs at 20.4 rad/sec. On the frequency response at that

frequency, a gain variation of 3.3 dB combined with a phase

variation of 16.6 degrees will drive the system unstable. Plugging

these two numbers into Equation (2.16) yields a SV of .396, exactly
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Figure 5._: Frequency response for the X-29 longitud-

inal control system (loop broken at point

A in figure 5.1).
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as predicted by the m-plot- Conversely, if one analyzes the SISO o

at the frequency of a gain crossover, the worst case variation will

be a phase margin (since gain is already at its critical value) and

the K-predlcted phase margin will match exactly the actual

(frequency response) PM. Gain margin behaves similarly at the phase

crossover frequency. This method, of course, works only if the

system is truely SISO. The point is that at the frequencies of the

classical gain and phase margins, the matches are quite close, as

indicated by Table 5.1. This fact will be true for multiloop

systems also, although the predicted GM's and PM's will not match

classical "one-loop-at-a-time" results exactly even at crossover

frequencies.

5.1.2 Lateral Mode

Figure 5.5 shows the X-29 lateral mode block diagram. This

system is truely MIMO, therefore classical analysis can yield over-

optimistic results. See References [i] and [3] for examples of this

phenomena, which was discussed in Section 2.1. In this section we

will again be comparing classical and slngular-value derived GM's

and PM's but with the understanding that dlscrepencles may represent

over-conservatlsm on the part of the MIMO analysis or over-optlmism

on the part of the classical analysis. Figures 5.6 is the g-plot,

and 5.7 and 5.8 are the frequency responses for 15,000 feet at a

Mach number of .9; Table 5.2 tabulates the resulting gain and phase

margins.
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Figure 5.6 : Singular valueleigenvalue plot

mode at M=.9 and H=I5,000 ft

for the X-29 lateral
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Fixate 5.T: Aileron loop frequency response for the X-29

lateral-directional control system (loop

broken at ZOH, rudder loop closed).
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Figure 5.8: Rudder loop frequency response for the X-29

lateral-directional control system (loop

broken at ZOH, aileron loop closed).
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Classical gain and phase margins were obtained by the method

described in Section 2.1 and pictured in Figure 2.2 (one-loop-at-a-

time). Again, it is apparent that the minimum of the slgma-plot

represents the worst case variation, whether it be a combined change

or a single change in gains or phases. For instance, at about 13-14

rad/sec, both the lateral and the directional Bode plots experience

phase crossovers. But in this range (see Table 5.2), both the o-

plot and the _-plot predict only the worst of the two gain margins,

the directional GM, closely. They are very innacurate at predicting

the lateral GM, because it is much higher and therefore not the

worst case variation. Furthermore, notice that in this case _min

occurs at 8.9 rad/sec, halfway between the directional GM frequency

and the directional PM frequency. It predicts a GM and PM that are

below all of the classical GM's and PM's, as one would expect.

Again, because it is predicting this worst case, the lateral mode

single-loop GM and PM are not matched accurately at all by the

multiloop margins derived from _mln" Thus clarity of information

has been lost because one number is being used to describe the

entire situation. Of course, although singular value information is

less accessible, it is more vital to stability of multiloop systems;

it provides guarantees that cannot be gotten from frequency

responses. An approach to interpreting singular values, based on

this example and on the discussion in the previous section, is to

look at the o-plot across the whole frequency range, and to realize

that the different modes of the system are being represented
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by relative minimumsin the curve. By doing this a more realistic

picture of the system's relative stability can be gained.

Interactions between modessuch as the one described above will also

show up on the K-plots; this is information which is not available

in the classical analysis.

5.2 SINGULAR-VALUE GRADIENTS APPLIED TO A REAL SYSTEM

Two sets of K-gradlents were done for each of the control

systems pictured in Figures 5.2 and 5.5.

The first set of m-gradlents was done with respect to the

aerodynamic and control power terms in the matrix model. These

gradients would be useful in determining the robustness of the

system, and in determining the information required from a flight

test or other parameter identification program. They might also

point out what types of design improvements are needed. For

instance, if the control system is very sensitive to changes in CNr

at the dutch roll frequency, a yaw damper loop may be necessary.

Section 5.2.1 discusses a specific example.

The second set of _-gradlents was done wlth respect to the

control system block diagram elements. These gradients also

indicate robustness, but the nominal values of the parameters in

question are usually known to quite high accuracy. The usefulness

of these gradients lles more in their ability to show where control

system improvements might be available. An example is presented in

Section 5.2.2, where the X-29 is used.
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5.2.1 Aerodynamic Gradients

The aerodynamic parameters (both the dimensional force

derivatives and the dimensional control power derivatives) appear,

for the most part, as matrix elements in the A and B matrices, and

not as combinations of these elements. As in Equation 4.14, these

parameters are in the upper left-hand quadrant of the augmented

matrix, after control system, actuator, and sensor dynamics have

been appended to the system. These are the parameters which are of

primary interest to a sensitivity analysis, because they are known

to the least accuracy. Table 5.3 shows the results of performing

the o-gradlent and data reduction analysis described in Section 4.2

on the aerodynamic parameters of the aircraft at a Mach number of .9

and an altitude of 15,000 feet. It is evident from this that very

few of the aerodynamic parameters have a strong effect on the

stability of the system. This indicates a well-deslgned system.

Table 5.3 indicates that M a' and MDC' (Pitching acceleration

due to change in canard deflection) are the most important

derivatives. This result agrees quite well with the results

achieved by NASA-Dryden and Grumman personnel, who used classical

techniques.

The singular value for 15,000 feet at a Mach number of .9,

combined with the Ma' and MDC' gradients, is plotted in Figure

5.9. The importance of frequency interaction is evident in this

plot. Applying Equation (2.51) across the frequency range yields
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Figure 5.9: Plot of I) singular value, 2) a2/a_c, and 3) ad/aM'_

for the X-29 longitudinal mode at M=.9 and H=IS,000 ft
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Table 5.3: Sensitivity of the X-29 to changes in aerodynamic and

control power derivatives, both longitudinal and

lateral. Parameters are in descending order of

importance (M-.9 and H=I5,000 ft)

Parameter variations necessary to drive _min to .20

(see llst of symbols for parameter definitions)

longitudinal matrices:

B(3,1)-_DC' 22.5
A(3,Z)-_a" 3.47

B(3,2)-_DSF: 22.5
B(3,3)-_n_ v 22.5
A(2,2)-Z "v° 1.98

B(2,2)-2_ v' 1.37
A(3,3)-_ v- 15.5

B(2,1)-2g c' 1.65

B(2,3)-Zns r' 2.39

s(l,l)-X_ .211
A(2,1)-Zur .100

B(I,2)-XDg F .211
A(I,2)-X a- .211

A(I,I)-X u .I00
A(3,1)-M u' .I00

B(1,3)-XDs T .145

A(I,3)-Xq 1.65

lateral matrices:

B(3,2)-NDR' 10.6

B(3,1)-NDD F' 7.33
B(2,i)-LDD F' 1.98
A(2,2)-L_ _- 1.98

A(3,1)-N_' 1.65
A(3,2)-N_' 6.08

A(2,1)-L_' 1.65
A(I,2)-Y.' 1.65

A(I,I)-Y_' .940

B(2,2)-L_R' 1.65

A(I,2)-YDR' .940
A(3,3)-Nr r 7.33
A(2,3)-L_' 7.33

B(I,I)-Y_D F' 1.98

•36 -.556 29% -44%
•58 -.491 78% -66%

•36 .184 -86% -44%
• 36 .081 -196% -44%

.67 -.234 200% -70%
•72 .107 -484% -72%

.46 -.034 756% -56%
•69 .0419 -- -71%

.63 -.0199 -- -68%

.77 -.00191 -- -74%

.77 .000965 _ -74%

.77 -.000616 -- -74%

.77 .000535 -- -74%

.77 .000514 -- -74%

.77 .000235 _ -74%
•77 -.000090 _ -74%

.69 .000008 -- -71%

•59 .309 -126% -66%
•62 -.289 145% -68%

1.30 .643 -171% -85%
1.30 .448 -245% -85%

1.27 -.343 311% -84%
.72 -.144 359% -72%

1.27 .155 -689% -84%

1.27 -.149 719% -84%

l.Ol -.104 782% -80%
1.27 .125 -857% -84%

1.01 -.0323 -- -80%

•62 -.00962 -- -68%
•62 .00612 -- -68%

1.30 -.0156 _ -85%

Definitions:

param: Parameter for which gradient has been taken

taml n : Frequency at which thls parameter has maximum effect

O(Wmin): Singular value at wml n

_O/_p/p): Singular-value gradient at _mln

Ap: Percentage change in p necessary to drive _min to .20

bo: Percentage change in o necessary at mmln to get to .20

NOTE: The derivatives Zq' and Yr' have been omitted fro_ the

analysis. They give misleading results because Zq'_l-Zq/Ol

and Yr'=I-Yr/UI, so that very large changes in Zq and Yr are

necessary to cause any significant e[fect on Zq' and Yr''

respectively.
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' and required to drive _ tothe plots of the variation in M MDC'

•2; these plots are shown in Figures 5.10 and 5.11 respectively.

These plots show that the two most critical frequencies are "4-5

rad/sec and 21 rad/sec. The interesting thing about Figure 5.11 is

that it bounds the allowable variation in MDC' in both the negative

and the positive direction, giving the necessary accuracy of that

parameter for the system to remain robust.

It is also interesting to note that if M a' and MDC' vary

together in the same direction (which they are likely to do in the

X-29, because the canard effectiveness is the primary contribution

to both M=' and MDC'), the effects of their variations tend to

cancel one another out. This result agrees with other sensitivity

analyses, although in these analyses the cancellation is not as

graphically evident as it is in Figure 5.9. The frequency nature of

this cancellation is also evident; at the higher frequencies it does

not occur; the M a, gradient is large (negatively), while the MDC'

gradient is very small (positively).

Figure 5.9 and the above discussion suggest another way in

which aerodynamic sensitivity information can be presented. Using

aerodynamic concepts, one could set up equations which described how

various combinations of parameters will probably change. For

instance, if the llft-curve slope of the horizontal tall is

predicted to be different than it actually is, the parameters which

will be effected are

Za, Z_, Zq Ma, M. and M' a' q
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a_-plot minimum to .2 for the X-29 longitudinal mode

at M=.9 H=15,000 ft
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f

Plot of percent variation in MDC required to drive

G-plot to .2 for the X-29 longitudinal mode at

M=.9 and H=15,000 ft
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These parameters will all vary when the lift curve slope of the

horizontal tail changes. Thus a weighted sum of these parameters

represents a parameter of the system which might change, and a

singular-value gradient plot with respect to this weighted sum

represents a very useful measure of the sensitivity of the system.

5.2.2 Control System Parameter Gradients

The control system parameters of interest to the designer are

usually the constants that appear in the blocks of Figures 5.1 and

5.5, such as the compensator and filter break frequencies and

damping ratios, and the feedback gains of the system. Using the

partial-derivative expansion method described in Section 4.1, it is

possible to get the gradients with respect to these parameters, even

though they usually do not appear as single elements of the A, B, or

matrices. Table 5.4 gives the results of a sensitivity analysis

on all the parameters in the longitudinal system. Table 5.5 gives

similar results, for the parameters in the lateral control system.

These results have been verified by perturbing some of the control

system parameters, one by one, computing the resulting o-plot, and

computing the derivatives numerically. Tables 5.4 and 5.5 are in-

cluded to demonstrate the volume of information that can be sorted

through by the analysis. Out of the 39 parameters in the lateral-

directional and longitudinal control system that we analyzed, we

were able to isolate the few that effect the stability of the

control system most dramatically, and to order these from most to
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Table 5.4: Sensitivity of the X-29 to changes in longitudinal
control system parameters. Parameters are in descending
order of importance (M=.9 and H=IS,000 ft)

Parameter variations necessary to drive _mln to .20

param.(p) _Lin -_(_in) ' a-_/{_'p/p_ aP A__
• , ,± i • • , •

P1 .I00 .77 58.3 -1% -74%

C3 18.6 .38 -1.58 12% -48%

P2 6.08 .58 3.27 -12% -66%

K3 18.6 .38 -1.20 15% -48%

C2 18.6 .38 -1.05 17% -48%

K2 18.6 .38 -.939 20% -48%

GXAI 22.5 .36 .473 -34% -44%

N1 22.5 .36 -.461 36% -44%

G2 18.6 .38 .477 -39% -48%

N2*N3 15.5 .46 -.674 39% -57%

GXG2 22.5 .36 -.324 49% -44%

C5 22.5 .36 .178 -90% -44%

B2 22.5 .36 .148 -107% -44%

C1 18.6 .38 -.151 122% -48%

PST .537 .77 -.460 125% -74%

GSI 22.5 .36 .125 -128% -44%

GFI 22.5 .36 .105 -152% -44%

B1 18.6 .38 -.0895 205% -48%

C4 22.5 .36 .0160 -992% -44%

G1 6.08 .58 .0343 -- -66%

K1 4.18 .57 -.0274 -- -65%

KST .647 .77 .0228 -- -74%

K4 22.5 .36 .000 -44%

Definitions:

param: Parameter for which gradient has been taken

_mln : Frequency at which this parameter has maximum effect

a(mmin): Singular value at _mln

ao/(ap/p): Slngular-value gradient at _mln

Ap: Percentage change in p necessary to drive _ min to .20

A_: Percentage change in _ necessary at _mln to get to .20
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Table 5.5 : Sensitivity of the X-29 to changes in lateral control
system parameters. Parameters are in decendlng order of
importance (Mm.9, H=I5,000 ft)

Parameter variations necessary to drive _min to .20

-- param.(p) mmi n _(_in _ "_o/{_p/p) Ap A_

N2 .780 .99 13.2 -6% -80%

P2 1.13 1.07 -13.3 7% -81%

P1 2.39 1.16 12.g -7% -83%

NI 5.04 .78 -2.06 28% -74%

K6 10.6 .59 -.386 101% -66%

KI7 10.6 .59 -.373 104% -66%

XKP4 10.6 .59 -.373 104% -66%

K2 2.39 1.16 -.553 174% -83%

XKP3 2_39 1.16 .553 -174% -83%

K7 7.33 .62 -.133 314% -68%

K5 1.9 1.30 .0638 -- -85%

K3 8.83 .56 -.0178 -- -64%

K4 8.83 .56 .000 -- -64%

KI6 8.83 .56 .000 -- -64%

KI8 8.83 .56 .000 m -64%

Definitions:

param: Parameter for which gradient has been taken

mmin: Frequency at which this parameter has maximum effect

o(_in): Singular value at mmi n

8_/(3p/p): Singular-value gradient at mmi n

Ap: Percentage change in p necessary to drive _min to .20

A_: Percentage change in _ necessary at mmi n to get to .20
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least important. Of course, the plots and tabular data must be

studied carefully to determine which parameters effect the system at

the most important frequencies, what trade-offs result if a

parameter changes, and the extent to which the linearlty assumption

is valid. But all the necessary data to make intelligent

sensitivity judgements is nowavailable. Oneexample of the effect

of a K-gradient on a K-plot will presented to demonstrate that the

gradients are in fact correct. Figure 5.12 shows the K-plot for the

longitudinal control system at M=.9, H=IS,000 feet, before and after

a 50%variation in the feedback gain GXG2(see Figure 5.1). The

GXG2gradient is also included on this plot, so that it is

immediately clear that the prediction of the gradient is at least

qualitatively correct. GXG2is chosen because, although it is not

the'most important' parameter as measured by Table 5.4, its effect

occurs at the most critical frequency of the system. Furthermore

the trade-off which a variation in GXG2imposes is quite acceptable;

the minimumsingular value can be increased by about .15, with a

similar decrease occurring in the singular value at a higher

frequency, where there is plenty of margin.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this paper it has been demonstrated that singular values and

their gradients can be applied to systems which are of the

complexity and size of problems in the real world. The extensions

needed to analyze hlgh-order digital systems do not make the

analysis intractable. An important conclusion that resulted from

this project was that the control system must be properly scaled if

the singular values are to be useful as measures of sensitivity.

The scaling techniques discussed in Section 2 are a vital first step

in insuring that the analysis will give an accurate indication of

the sensitivity of the control system to parameter changes.

Another important conclusion is that tabular results, although

useful, are not usually adequate for this type of sensitivity

analysis. Any method for tabulating the information in the o-plots

and K-gradient plots must necessarily oversimplify both frequency

interactions and the effects of nonlinearities. So, as with any new

tool, a control system designer must work with the actual plots for

a while, to get a feel for what they mean and what they do not

mean. Given a proper understanding of the mathematical basis for

singular values, the designer can get a lot of otherwise unavailable

information from these plots.

Further research into the SVA might study a) the

conservativeness of singular values as a robustness measure, b) the

nonlinearity of the variation of the o-plot with parameter changes,
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or c) the sensitivity of plots of singular values which are not the

minimum.

The conservativeness of singular values is a current area of

research. Manyinroads have been madeinto reducing the

unstructured and therefore conservative nature of singular values.

Manyof the less conservative robustness measures being studied are

based on scaled singular values, which would lend themselves to the

gradient technique. The methods for scaling the system to change

the singular value plot presented in Section 2 yield an acceptable

sensitivity measure; but non-real, non-dlagonal scallngs may yield

better results. In any case, the effect of scaling the system on

the gradient equations is of interest for future studies. The use

of other robustness measures, such as structured singular values

[21], in a sensitivity analysis is also a possible area for further

reasearch.

The nonlinearity of singular values with respect to changes in

parameters is a characteristic which, if properly understood, does

not pose any real difficulty to the technique. The slngular-value

sensitivity analysis is a flrst-order analysis which is meant to

pinpoint parameters which need further study. It is not meant to

yield exact results; so nonlinearities, as long as they are not too

great, do not invalidate the results. (See [23] for a discussion of

the range of llnearlty of singular-value plots.) More work does

need to be done, however, to quantify the level of nonlinearity that

can be expected from slngular-value plots when control system

parameters change.
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Finally, some way to account for the singular values which are

not the minimum, and their gradients, must be implemented. This is

necessary because g-plots might "cross-over" one another if their

gradients are large enough. This is primarily a bookkeeping problem

because it can be handled by simply performing the SVA on the

second-smallest al-plot instead of the smallest, and then on the

thlrd-smallest and so on. The parameter sensitivities can then be

compared to get a full picture of the system's sensitivity. The

implementation of this technique, and the organlzatlon of the

increased amount of data that result, are the challenges which

future studies might tackle. Alternate methods for accounting for

larger singular values might also be studied.
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APPENDIXA:

DERIVATIONS CONCERNING SINGULAR VALUES

Derivations considered too involved for the text are contained

in this Appendix. Section A.I contains proofs referenced in Section

2, Section A.2 contains proofs referenced In Section 3, and Section

A.3 contains proofs from Section 4.

A.I PROOFS FOR SECTION 2

The first derivation is of the basic theorem of singular value

decomposition, which states that any matrix can be expressed as a

real diagonal matrix combined with two unitary matrices. This

derivation was referenced in Section 2.2. This proof is adapted

from Reference [ii].

Let A be any complex-valued m x n matrix of rank r. Then there

exist complex unitary matrices U (m x m) and V (n x n) such that

A = USV*,

whe re

and E=diag(_l,a2,..._ r) with

al > _2 > "'" _ ar > 0

(A.I)

[For our special case, A, V, and U are all n x n; and, since A is of

full rank, r--n and S=E]
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Proof:

Since A*A ) 0 (nonnegative definite), the eigenvalue spectrum of

A'A, p(A*A) £ [0,+_). Denoting p(A*A) by oi2 , i=l,...n we can

= = . Let Vl,arrange that oI ) o2>...o r > 0 = Or+ I Or+ 2 ...a n

v2,...v n be a corresponding set of orthonormal eigenvectors and let

V I = (Wl,W2,...,Vr) (A.2)

V 2 = (Wr+l, Vr+2,...,Vn). (A.3)

Then if Z = diag(ol, o2,...Or) , we have

whence

A*AV I = VI Z2 (A.4)

E-IvI*A*AVIZ-I = I.

Also A*AV2=V2.0 so that

V2*A*AV 2 = 0;

(AV2)*AV 2 = 0, and thus

AV 2 = 0.

(A.5)

(A.6)

(A.7)

(A.8)

Let UI=AVl Z-I. Then from (A. 5) we have UI*U 1 = I; thus U 1 is

unitary. Choose any U 2 such that U = (UI, U2) is orthogonal.

UI*AV2 1U2*AV 2

= [UI*AVl

U*AV L U2*AVI

U2*(UIr)

0 0,

and so A ; USV* as desired.

Then

(A.9)

A.2



The next two proofs were also used in Section 2.2. The first

is that the maximumand minimumsingular values correspond to the

Euclidean norms, which are the maximumand minimumchange in length

a matrix can produce as a transformation. The second is that

_(A-I I
) " (A.10)

Both of these facts are proven in Reference [i0] as follows:

Consider a matrix A as representing a linear transformation of one

n-dlmensional space X into a second such space Y. Thus y = Ax is in

Y and x in X. In representing the linear transformation by the

matrix A we have assumed given orthogonal coordinate systems in both

X and Y. Now consider an orthogonal change of coordinates in space

X, so that the vector represented above by x obtains the new

representation x' where x = Vx'. In the same way, by a different

orthogonal coordinate change in Y, we obtain a new representation

for y, namely y', where y = Uy'. Here both U and V are the matrices

of [Equation A.I]. As a result of these changes of bases in X and Y

the transformation originally represented by A obtains a new

representation, which we will show to be S. We have

y' = U*y = U*A(Vx') = (U*AV)x' = Sx'. (A.II)

ThUS y' = Sx'...

In the new orthogonal coordinate systems the transformation has

a very simple representation. In terms of components we have

Y'I = alX'l

Y'2 = _2x'2

Y'r " arX'r

Y'r+l = 0

(A. 12)

W _ 0en
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The transformation nowmerely maps the first coordinate axis of X
onto the first coordinate axis of Y, with a magnification factor oI
> 0. It does the samefor the 2nd, 3rd,...,r-th coordinate axes o_

X, with the respective magnification factors o2,...o r. The
(r+l)-th,...,nth coordinate axes of X are mapped onto the zero

vector of Y.

From A.12 we can show that S maps the unit sphere

P = {x':JJx'JJ = i} into an r-dlmensional hyperellipsold E = SP of

vectors y' such that

y, 2 y, 2
I r

--+ coo

2 2

°I or

-- _ o.0= 1 and Yr+l = Yn 0. (A. 13)

One of the points of E furthest from the origin 8 is the point

(oi,0,0...0). If r < n, then E contains the origin 8. If r = n,

then E does not contain the origin and one of the points of E

closest to O is (O,...,0,On). If r<n, then S and hence A are

singular matrices. If r=n, S and A are nonsingular and have

inverses; then directly from A.12 we see that

S-I = . • (A. 14)

On-1

Thus the singular values of A-I are Ol -I ,00.,o n •

From the discussion above and from the definition of JJAH as

JJAx Jl
max

;IxJJ
x#O

we see that

IJAIt = JJSH = o I (A.15)

(in other words, the singular values correspond to the matrix

Euclidean norms, as was to be proved).

If r=n, then

[jA-ljl= JIS-iH = 0 -I (A.16)
n

(in other words, _(A -I) = I/_(A), as was also to be proved).
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The last proof from Section 2.2 is taken from Reference [3].

This theorem allows the following stability criterion for the

perturbed system return difference matrix:

the smallest matrix J for which

o[I + HGJ(J_)] = 0,

to be written as a criterion for the L matrix alone.

L must be smaller than

(A.17)

To do this, we

first rewrite [I + HGL] in a form that will allow G to be separated

from L:

I + HGL = (L-I + HG)L (A.18)

= [(L-l-l) + (I+HG)]L

= [(L-l-l)(l+HG) -I + I](I+HG)L.

Since (I+HG) and L are both nonslngular, (I+HGL) will be nonslngular

if [(L-I-I)(I+HG) -I + I] is nonsingular. This will be insured if

[3]

_[(L-I-I)(I+HG) -I] < _[I] = i.

but, according to [16],

_[(L-I-I)(I+HG) -I] • _[L-l-l]o[l+HG-l].

So a sufficient condition for stability is

o[L-I-I]_[(I+HG) -I] < I, or

_[L-l-l] < o-l[(l+HG)-l],

which translates, using Equation (A.10), to

_[L-l-l] < o[I+HG], Q.E.D.

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
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A.2 PROOFS FOR SECTION 3

In Section 3.2, approximations for the derivatives of _ and

are presented. The approximation for a?/_a is proven by applying
C

it and comparing the results to the exact solution. The

approximation for 8_/8a follows when the 8_/_a equation is
c C

assumed.

The approximation for _/aa is
C

_A

approx = _ _ _ _ "
c

(A.24)

If the Taylor series expansion for _ is substituted into this

formula, the result is

A T2 3A A T 2

i c c ___+-i----+ ...) (T + + ...)
C

aA A T 2 _A _A A T2 A T 2 _A A T 2

i (T c c c c c c c c
2 _ T + 2 _a T + T "_a 2 + _'_a 2

C C C C

...)

I _A _A T 3 _A T 3 _A T 4
c T 2 c c c

= (-_ _ + A + A c + A Ac + ...c _a 4 _ _- c _-a'- 8--
C C C C

the exact formula for _/_a comes from taking the partial
c

derivative of the Taylor series expansion, as follows:

T 2 T3
_=T+A +A +c--f c r.' "'"

_p 8A c T2 _Ac T 3 _Ac T 3

3T = _"-a"-_ + Ac _ _ + _ Ac _ +
C C C C

(A. 25)

(A.26)

(A.27)
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Subtracting Equation (A.27) from (A.25) yields the error involved in

the approximation.

_ 3_ 3A T 3 3A 3 3A 4

3-_C I - 3-_--- A c + c T c T
c _a 12 _ Ac _-2 + _ Ac _ + "'"

approx c c c c

(A. 28)

so that the approximation is good up to the T 2 term of _, with an

error of order T3.

To prove the approximation for 3_/_ac, we start with the

following relation, which is obviously true if one studies Equations

(3.9) and (3.10):

= _A + I;
c

(A.29)

• " 8a
c

3A
3_ c

3a Ac + ¥ _"_"
c c

3A _A
I c +_ c

= _ _3-E'-_Ac 27
c c

3A
I c

= _ _ _ (¥A c
c

+ 2_)

I 3Ac

= _ _ 3-_- (+ + I).
c

(A.30)

A.3 PROOFS FOR SECTION 4

In Section 4.2.1, the computation of (Is-A) -I is mentioned as

part of the algorithm to find the singular values. Computing

(Is-A) -I for s=J_ at each frequency point takes by far the largest

percentage of the total computation time. Thus it is necessary to

A.7



make this process as efficient as possible. After studying various

alternatives, an algorithm presented by A. J. Laub [22] was used in

the Dryden implementation of SVA. This algorithm is presented here,

and extended to include digital systems.

The first step is to determine the similarity transformation

that puts A in upper Hessenberg form. A Fortran subroutine which

finds the necessary transformation is available in the ORACLS

package, and yields T such that

A = THT-I, (A.31)

where H is an upper Hessenbergmatrix, which meansthat the upper

triangle and one subdiagonal of H are nonzero. The decomposition of

A into H and T need only be done once, so adds very little

computation time to the total process. (Is-A) -I can be written in

terms of A and T as follows:

(Is-A) -I = [Is - (THT-I)] -I (A.32)

= [T(T-Is - HT-I)] -I

= [r(Is - H)r-l] -I

= [(is-H)r-l]-ir -I

= T(Is-H)-IT -I,

where the following fact has been used:

(AB)-I = B-IA-I • (A.33)

pre- and post- multiplying both sides of Equation A.33 by AB proves

it to be true. To find (Is-A) -I at s=j_ we first solve

(Ij_-H)Z = T-I (A.34)
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/

Then

(Ij_-A) -I = TZ. (A.35)

Suppose Z=X+JY where X,Y e RnXn (n is the dimension of A). Upon

equating real and imaginary parts in Equation (A.34), we get the

following 2.nth-order real system to determine X and Y:

Thus, X--(I/m)HY and Y=-m(_2I + H2)-IT -1.

(A.36)

The matrix (m21 + H 2) will

be invertible if (jml-H) is invertible [22]. Note that (m21 + H 2)

is no longer upper Hessenberg, but is almost Hessenberg in the sense

of having two, rather than one, nonzero subdiagonals. Its shape is

wholly typified for n=5 by the matrix

X X X X X

X X X X X

X X X X X

0 x x x x

0 0 x x x

linear systems involving matrices of this type can be solved using

approximately n2 multiplications. We summarize the Hessenberg

method using realarithmetic.

l) Reduce A _o upper Hessenberg form H, find T and T-1, and

compute H_; this step is only done once.

2) Solve (m2I+H2)y=-mT -I for Y.

3) Compute X-(I/_)HY (_0; (Is-A)-I_-TH-IT for _=0).

4) Compute (lJm - A)-I=(TX) + J(TY)

If the system is digital, we desire to compute (Iz-A) -I, where

z = ejmT = cos(mT) + J.sin(mT). (A. 37)

For this case, Equation (A.36) can be written

A. 9



-_::-_°s-t_)_-_!'°<°_>1[_]: [ ] • _A._8_I-HI sin(_T) ............. T-I
[ -H-I cos(_T)J 0

If _ is taken to be sin(_T) and H is taken to be H-l-cos(_T), then

Equation (A.38) can be written

[-t,+:____l

and the derivation proceeds as above.

A. IO



APPENDIXB:

DESCRIPTION OF THE X-29A ADVANCED TECHNOLOGY DEMONSTRATOR

The X-29A is currently being flight tested at NASA Ames-Dryden

Flight Research Facility. This unique configuration is 35%

unstable, so the verification of the flight control system is of

primary importance to the success of the program. Thus very

accurate information about both the aerodynamic characteristics and

the control system characteristics is available. This information

was used to construct the example runs presented in Section 5. This

appendix presents the numbers necessary to describe the dynamics and

feedback laws of the X-29 at a Mach number of .9 and an altitude of

15,000 ft.

Figure B.I is a three-view of the X-29A. Table B.I gives the

dynamic matrices for the X-29 longitudinal'linear model, for M=.9

and H=I5,000 ft. The four states are velocity, angle of attack,

pitch rate, and pitch attitude angle, in that order:

xT = [ u _ q ® ] (B.I)

The longitudinal control variables are canard, symmetric trailing

edge flaps, and strake flap:

uT - [ C SF ST] (B.2)

The feedback laws of the primary (or "normal digital mode")

longitudinal control system at this flight condition are modeled by
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Table B.I Longitudinal dynamic and control-power matrices for the

X-29 at M= .9 and H=I5,000 ft

A matrix:

u

u(fps) _(rad) q(rad/s) e(rad)

-.4368E-01 -.9045E+01 -.4514E+00 -.3213E+02

-.1485E-03 -.1791E+01 .9910E+00 .2522E-06

-.6588E-03 .3578E+02 -.6981E+00 .0000E+00

.0000E+O0 .O000E+00 .1000E+OI .0000E+O0

B matrix:

DC(deg) DSF(deg) DDF(deg)

-.1444E+00 .5415E-01 -.2530E-01

-.2043E-02 -.5604E-02 -.8410E-03

.3376E+00 -.1909E+00 -.6556E-01

•0000E+00 .O000E+O0 .O000E+O0

B.3



the diagram in Figure 5.1. The values for the control system

parameters in this figure are given in Table B.2.

Table B.3 gives the dynamic matrices for the X-29 lateral

linear model, for M=.9 and H=I5,000 ft. The four states are

sideslip angle, roll rate, yaw rate and bank angle:

xT = [ 8 p r _ ] (B.3)

The lateral control variables are rudder and differential trailing

edge flaps:

uT = [ R DF ] (B.4)

The feedback laws of the normal digital mode lateral control system

at this flight condition are modeled by the diagram in Figure 5.5.

The values for the control system parameters in this figure are

given in Table B.4.
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Table B.2 Gains and transfer function coefficients for the

X-29 longitudinal control system - Figure 5.1

(M=.9 and H-15,000 ft)

KI - 0.001

K2 m -0.1671

K3 m -0.1421

K4 = 0.0

KST - 0.006183

GI - 1.428
GO _ --q q_q

GSI - -0.70

GFI - -0.30

GXG2" -5.568

GXAI= -3.428

PI - I

P2 - 1

PST " 0.9756

N! - !

B1 - 0.2308

N2 m 1

N3 - I

B2 - 0.2308

CI _ 0.429

C2 = -2.839

C3 = 3.843

C4 = -0.04

C5 - -0.4
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Table B.3 Lateral-dlrectlonal dynamic and control-power matrices
for the X-29 at M=.9 and H--15,000 ft

A matrix:
8(tad) p(rad/s) r(rad/s) _(rad)

-.2872E+00 .5241E-01 -.9986E+00 .3371E-01

-.4608E+02 -.4948E+01 .1651E+O1 .O000E+O0

.II04E+02 -.1828E+00 -.8023E-01 .0000E+O0

$ .0000E+O0 .IO00E+OI .5248E-01 .O000E+O0

B matrix:
DDF(deg) DR(deg)

-.1465E-02 .I017E-02

.1949E+01 .4671E+O0

• 1257E+00-.1203E+O0

.0000E+O0 .O000E+O0
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Table B.4 Gains and transfer function coefficients for the

X-29 lateral-directlonal control system - Figure 5.5

(M=.9, Hffil5,000 ft)

K2 _" -l

K3 - 3

K4 ,, 0

K5 = -0.03384

K6 = 0.9938

K7 ,. -0.05243

K16 ffi 0
V1 "7 __ _ _Q

KI8 m 0

XKP3 - 0.018

XKP4 ffiI

NI = 1.428

PI - i

N2 _ 1

P2 ffi0.9876
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APPENDIXC:

USER'S GUIDE TO SVA

SVA stands for slngular-value analysis. SVA is a program to

compute the slngular-value plot (m-plot) of the return difference

matrix of a control system. The node at which the return difference

matrix is computed (input or output) is controlled by the user's

input matrices (see Sections 3.2 and 4.2.1). SVA also computes the

"gradients", or partial derivatives, of the _-plot with respect to

plant or controller parameters.

This appendix describes how to run SVA. It is broken up into

five parts, four of which describe four ways in which SVA can be

used:

C.I Basic Definitions

C.2 Input Using a CONTROL Input File;

C.3 Input Using an Interactive Program Called PRESVA;

C.4 Input Directly From a Data File; and

C.5 Calling the Main Subroutine in SVA, Called SVANAL,

Directly.

The way to read this guide is to study the definitions in Section

C.I, and then skip to the section which corresponds to the way you

wish to run the program. Each section contains the following

information:

I) Discussion of the technique, includlng restrictions;

2) Definitions;

3) Input formats; and

4) Information necessary to run SVA on the ELXSI system.

C.I



C.I BASICDEFINITIONS

The definitions in this section apply to all the sections which

follow.

C.I.I Control System Descrlptlon

U =-Cx

for continuous systems, and

:

The control system which is analyzed by SVA is of the form

(C.I)

(C.2)

for digital systems.

give it the C matrix to fit the above equations.

(c.3)

(c.4)

Notice that SVA assumes negative feedback; you

Dimensions are

x : NSM x I ;

u : NC x i ;

A : NSM x NSM ;

: NSM x NC ;

: NC x NSM •

For digital systems, A and B are of the following form:

¢(AC,T) I LI2 ]
= _-----

L21 I L22

(c. 5)

whe re

_(AC,T) = I + AC-T +
AC 2 T2

2!

AC3T 3
+--

3_ _" oe • ,

C.2



and

T

F(BC,T) _ f ¢(AC, T)dT.BC.
o

AC and BC describe the continuous subsystem of the overall

control system, as illustrated in Figure 3.1.

T is the sample rate of the controller.

LI2, L21, L22, and G21 are terms added in the z-plane, after

discretizatlon of the continuous dynamics, to account for the

dynamics of the digital controller.

Dimensions for a digital control system are

x : NSM x 1 ;

u : NC xl ;

A : NSM x NSM ;

B : NSM x NC ;

C : NC x NSM ;

AC : NSU x NSU ;

BC : NSU x NCU .

C.1.2 Gradients

If you will not be computing gradients, you can skip this

section. In later sections, if you do not want gradients, simply

enter zero at the appropriate locations and no gradients will be

computed.

A g-gradient with respect to some parameter p has the form

@p (m) • (C.6)

It is a function of frequency, and describes the effect that the

parameter p has on the g-plot. Since the g-plot is a measure of the

relative stability of the system, a g-gradient shows the effect that

varying p will have on the relative stability of the system. The o-

plot will be effected by the parameter p in the following way:

C.3



Do

_perturbed(_) = _baseline(_) +_ (_) • Ap. (C.7)

This equation illustrates an assumption made by SVA. SVA assumes

that a first order Taylor series expansion approximates the behavior

of the _-plot as p varies. This assumption will hold only within a

certain range of Ap's.

To take out the effect of the relative size of various "p's °',

percent variations combined with normalized o-gradients are used by

SVA. A percent variation is computed as

.too), (c.8)

and a normalized gradient as

_o Do

= 8--{ " J,pH. (C.9)

Thus Equation (C.7) becomes

Do
- Ap

£perturbed (m) = _nominal (m) + (_p-T67_ (m) " llpll" (C.10)

In this guide it is very important to distinguish between

o-gradlents and normalized o-gradlents.

SVA allows normalized _-gradients to be obtained for any

parameter p which is

i) An element of the matrices A, B, or C if the system is
cont inuous.

2) An element of the matrices

AC I LI2 .]
AD =

L21 I L22

BD = - ,

(c.11)
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and C if the system is digital. Compare AD and BD to

and B in Equati2n (C.5); The AD and BD matrices are used

instead of A and B because gradients with respect to _ and

r are not of interest; see Section 3.

3) Any linear combination of elements of A, B, and C if

the system is continuous.

4) Any linear combination of the elements of AD, BD, and
C if the system is digital.

To avoid confusion, all gradients with respect to matrix elements

(types I and 2) will be referred to as element-gradlents. All

gradients with respect to parameters which are linear combinations

of matrix elements will be called partlal-sum gradients. Partial-

sum gradients are much harder to describe to SVA, so they should be

avoided at first if possible. They are, however, quite necessary

for some applications.

To get partial-sum gradient information, SVA calculates the

following:

3_ 3o 3o

as functions of frequency, where aij , bij , and cij are any elements

of the A, B, or C matrices, respectively. SVA then computes the

normalized _-gradlent using partial derivative expansion equations

of the following form:

3o _a i _o 3blj 3o 3cij 3o"= r J - +E-- " +r

3p 3p 3alj _p 3bij 3p 3cij"

(C.12)

The information which must be supplied to SVA for each p is

3b 3cij--ij and--
3p ' _p ' 3p
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for all i,j for which these derivatives are non-zero.

The wa____ythe partial-derivative expansion information is

formatted in the SVA input file is only important if you plan to do

direct data-file input; this is discussed in Section C.3. The kind

of information which must be transferred to SVA is:

I) the number of terms in the partial-derlvative

expansion;

2) the original value of p;

3) the locations in A, B, and C of the elements alj ,

blj , and cij which make up the partial-derlvative

expansion; and

4) _aij/_p, _bij/_p, and _cij/_ p for each term in the

expansion.
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C.2 Using a CONTROL Input File to Run SVA

C.2.1 Discussion

The program CONSVA is simply a modified CONTROL. It runs in

exactly the same way as CONTROL, except for a few modifications to

the input file and the output filenames. These will be explained

below.

CONSVA has been set up to run as a filter. It takes a

CONTROL input file from $Stdin and outputs an SVA input file at

$Stdout. It can be run using piping as explained in Section

C.2.4. Control's normal output is sent to a scratch file called

CONSVA.SCRATCH.

CONSVA serves two purposes. First, it allows control systems

to be described using the block-dlagram methods of CONTROL. It

translates this information into the A, B, and C matrices required

by SVA. For digital systems, it also provides the continuous

matrices AC and BC. The second function of CONSVA is to generate

all the information required by SVA to do normalized partlal-sum

gradients.

The following two sections provide more detail about what must

be done to use SVA through CONTROL. Section C.2.1.I discusses the

form which the control system must take in order for CONSVA to

work. Section C.2.1.2 discusses how the partlal-sum gradients are

computed.
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C. 2.1.1 Restrictions

The type of control system described by the CONTROL input file

must conform to all the assumptions in SVA. This is especially

important for digital systems. Figure C.I shows the necessary

format for the control system. This may look a little restrictive,

but actually most of the restrictions represented graphically in 4

Figure C.I are already a part of CONTROL. The following additional

restrictions are added to those imposed by CONTROL:

I. You must specify an open-loop analysis (SYSTEMffiI), with

the 'mixed' option (MIXED=l). (NOTE: Digital

systems may also be analyzed with SYSTEM=2, but the

gradients for these systems will not be correct.) The

namelist variable FRPS is used to specify that singular

values are desired. FRPS = 3, 4, or 5 specify 3 possible

types of singular value analysis; these will be explained

later.

2. You must create the block diagram, thin the y vector, and

thin the u vector in such a way that the equation

u ffi -y (C. 13)

will "close the loop" properly and create the closed-loop

system that you're attempting to analyze. Thus both the

dimensions of y and u and the sequence (or order) of there

elements must match up exactly. Obviously Equation (C.13)

also has implications about the signs of the various

interconnections. For instance, if you have a CONTROL

input file which correctly yields the closed-loop

eigenvalues of the system, and you simply break the right

loops to get the open-loop system represented in Figure

C.I, it will be wrong because the SVA program assumes that

there is a minus sign in the feedback path.

3. None of the variables being fed back (represented by

CONTROL's y vector) can include control-position (u

vector) elements. Very simply, this means that the

augmented system resulting from this run through CONTROL
must look like this:

x ffiAx + Bu, (C.14)
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For output node singular values:

Digital

Blocks

Continuous Subsystem
!

Continuous
Blocks

I

Dynamic

Matrices

A,B,H,G,F

Continuous

Blocks

I
I

I
l

Y

NOTE: CONSVA can compute partial-derivative expansions only

only for the structure shown below.

U

For input node singular values:

f

I

I

Continuous Subsystem

Continuous

Blocks

Dynamic

Matrices

A,B,H,G,F

I

Continuous _ Digital
Blocks Blocks

I

_ y

Figure C.l: Structure of control system for input to CONSVA

C.9



_, : Hx. (C.15)

the F matrix must be zero, and setting u=-y and C=H must

transform the above equations into the following

representation of the system:

x = Ax + Bu, (C. 16)

u : -Cx. (C.17)

4. In CONSVA, the namellst variable IPT takes on a special

meaning in addition to it's normal CONTROL meaning. If

IPT=O, then no extra printout will be given from SVA.

IPT:I, a data echo will be printed out by SVA. This is

very useful initially, to verify that everything's

working. Finally, if IPT=2, the data echo for IPT=I

plus an echo of the matrices A, B, and C will be

printed out.

If

5. The namelist variables IFREQ, FFREQ, DELFRQ, DIGITL, and

DELT are passed on to SVA, so they should be specified

with care. They mean the same things that they mean to

CONTROL. The singular value analysis will proceed between

IFREQ and FFREQ. If you don't want to have to wait

forever for SVA to run, you had better specify DELFRQ :

1.2 or greater so that the number of points computed will

be relatively small.

The following additional restrictions must be observed if gradients

are desired. Restriction 7 arise because CONSVA cannot set up

gradients for systems that yield the output-node return difference

matrix if the system is digital.

6. The namelist variable CMAT must be : O. This restriction

applies to continuous as well as digital systems, whether

the return difference matrix is at the input or the output
node.

7. If you're analyzing a digital system you must break all

loops at zero-order holds. This has several implications:

a. Locations of the loop breaks are NOT arbitrary.

b. The following namellst variables in CONTROL are

restricted as follows:

NUC : ZOH
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NZTOU= 0

NYZTOK= 0

C.2.1.2 Partlal-Sum Cradients

The parameters for which gradient plots are to be computed are

tack the information to be described onto the end of you're

(otherwise sort-of standard) CONTROL file and you're in business.

Sections C.2.2 and C.2.3 will describe the necessary variables and

their formats.

CONSVA provides the information described in Section C.I.2,

formatted and ready for SVA to read. It computes the derivatives

_aij -'_bi , and

for each p specified by first introducing a Ap (small perturbation

in p). It then recomputes A, B, and C . Finally, it approximates

the above derivatives for all i,J by computing

Aaij Abij Acij

A--V-' and-z7 "

The size of Ap is governed by the variable PERCENT. The default for

Ap is i% of p, but you may choose a different percentage.
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C.2.2 Definitions

FRPS: CONTROL namelist parameter, used to indicate that

singular value analysis is desired set to 3, 4, or 5,

according to the directions in Section C.2.3.

NUMGRADS: Integer variable which tells CONSVA the number of

partial-sum gradients desired.

LABEL: lO-character label which must be supplied for each

gradient.

CODE: A one-character code variable which tells CONSVA the

location of the parameter for which a partlal-sum

gradient is to be computed. CODE can take on the

following values:

A : A matrix element (where A is the A matrix given

in the input file to CONTROL)

B : B matrix element (where B is the B matrix given

in the input file to CONTROL)

H : H '' '' '' H ''

F : F '' '' '' F ''

N : Numerator coefficients in block diagram

(NUMER matrix in MIXED option)

D • Denominator coefficients in block diagram

(DENOM matrix in MIXED option)

G : Block diagram gains

(GAIN matrix in MIXED option)

IROW: Row in matrix indicated by CODE

ICOL: Column in matrix indicated by CODE (If CODE=G, ICOL is

ignored and IROW is the desired element of the gain

matrix)

PERCENT: Percent variation used to determine the partial

derivative expansion. If not specified, PERCENT

defaults to 1%. An entry of lO.O would represents

10%. For parameters that have linear effects on matrix

elements (which are the vast majority), PERCENT will
have no effect.
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C. 2.3 Input Foraat

Set up a CONTROL input file, using the guidelines in the

previous sections. In the namelist, set FRPS as follows:

FRPS = 3 for unsealed singular values

FRPS = 4 for singular values that are optimally scaled at

each frequency ("structured" singular values)

FRPS - 5 for singular values that are scaled according to a

user-input D matrix which is constant with

frequency. (See Section 4.2.1).

Directly after the control data file information, a line

containing NUMGRADS in 15 format is necessary. If NUMGRADS=O, no

partial-sum information will be computed. If NUMGRADS#O, two lines

are needed for each of the NUMGRADS partial-sum gradients:

LINE I: LABEL [ in (AIO) format ]

LINE 2: CODE, IROW, ICOL [ (4X, AI, 215) format ]

'Stacked' cases of CONSVA can be run, and will result in stacked

runs of SVA.

EXAMPLE: You've got a system with 5 states and 2 controls, To it

you append i0 blocks to form a control system. You want to look at

gradients for the following elements:

A(3,2), B(4,1), NUMER(10,1), DENOM(3,6), and GAIN(2).

The input you should append to your CONTROL input file is

5

LABELI

A

LABEL2

B

LABEL3

N

LABEL4

3 2

4 I

I0 I
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D 3 6
LABEL5

G 2

Notice that

A 6 3

would be an invalid entry because, even though the augmentedmatrix

is larger than 5 X 5, only the elements of the original A can be

specified. Other elements in the augmented A will be specified

indirectly by using 'N', 'D', 'G', 'B', 'H', or 'F'.

If FRPS = 5, one additional line of data is required after the

gradient information. This line must contain unformatted, real

numbers, which represent the diagonal elements of the scaling

matrix, D, as discussed in Section 4.2.1. This is the last line of

each run when FRPS = 5. The dimension of D is determined by the

number of thinned inputs and outputs in the system description.

C.2.4 To Run

BATCH:

Create the CONTROL input file. This file should conform to the

specifications of Sections C.2.1, C.2.2, and C.2.3. Then type

BATCH +NOTIFY QUEUE=SLOW 'RUNCONSVA INPUT=CONTROLinputfile &

OUTPUT=SVAoutputfile PLOT=SVAplotfile'

When RUNCONSVA is used, CONSVA output is piped directly into SVA, so

the SVA input file is lost. The output file will contain a short

summary of the SVA run, including a table of the parameters

specified using CODE, IROW, and ICOL, in their order of importance
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as determined by the g-gradient technique explained in Section

4.2.3. The plot file will contain unformatted information used to

run SVAinteractlvely. To look at plots, type the following at the

interactive prompt:

SVA

The ELXSI will respond with:

Type 'P' if this is a plot-only run:

your response should be 'p' or 'P', because the plotfile has

already been created by RUNCONSVA,and this run of SVAis only to

look at plots. The programwill then prompt for the plotfile

name. You should give it the namewhich you specified in the

RUNCONSVAstatement (at PLOT=). An interactive run of SVAbegins at

this point. SVAis a menu-drlven program so no further explanation

is given here.

If the program does not run properly, llst the file

CONSVA.SCRATCHand look at the last llne in the file. This line

will contain an error messageif the input file to CONSVAis

wrong. If there is no error message, check the SVAoutputfile for

error messages.

An alternate way to run SVAis to specify an SVAinput file

nameand give it to SVAdirectly. This can be done either in batch

or interactlvely. First, type

CONTROLinputfile>CONSVA>SVAinputfile

The SVAinputfile can then be used as described in Section C.4.4.
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You can also pipe the CONSVA output directly into SVA interactively,

by typing

CONTROLinputfile> CONSVA I SVA >SVAoutputfile

The plotfile will go to a file named SVA.PLOTFILE in this case.
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C.3 Input to SVA Usin E PRESVA

C.3.1 Discussion

If you have created the matrices A, B, and C (and AC and BC if

the system is digital), you can run PRESVA to do all the rest of the

work for you. PRESVA can also be used as a model for subroutines

which do the same type of set-up, if you want to write a program

that automatically interfaces some control design program to SVA.

PRESVA is a very simple interactive program which allows you to

describe element-gradlents, partlal-sum gradients, frequency ranges,

• dimensions, etc. From this information it creates an SVA input

file. The code is self-documentlng and relatively short, so it

would be very simple to modify it to take information from a program

such as CONTROL. PRESVA should not be considered a production tool

unless gradients will not be computed, in which case it is probably

the easiest way to go.

C.3.2 Definitions

The only term used by PRESVA whose definition will not be

obvious is "coefficient". Partlal-sum gradients are comprised of

coefficients times element gradients, as follows:

c1 • --+ alj ... + C2a-- lj+ ... + C3 ....  C.18>

These coefficients are really Just the _alj/_p, _blj/_ p and

_cl./_p'sj_ described in Section C.I.2.
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C. 3.3 Input Format

A data file must be provided which contains the

matrices A, B, and C , in that order if the system is continuous.

If the system is digital the required matrices are AC,

BC, A, B, and C in that order. No blank lines should appear in the

file. The format for each matrix must be such that it can be read

using the following FORTRAN code, assuming the dimension of the

matrix is N x M :

DO I0 lffil,N

i0 READ(7,20) (B(I,J) J=I,M )

20 FORMAT(3E24.12)

C.3.4 To Run

create the data file described above. Then simply type

PRESVA

at the interactive prompt. Answer all questions to create an SVA

input file. Run this file using the instructions in Section C.4.4.
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C.4 Data File Input to SVA

C.4.1 Discussion

Creating a data file for SVA from scratch is a little bit

tricky if you are going to do partlal-sum gradients. If you're not,

it's probably the most stralght-forward approach. Gradient

definition in the SVA data file is a little confusing because it

utilizes techniques designed specifically to save space in both the

file and in the program, and to make the code more efficient. If

you have already created a data file by the methods of Sections C.2

or C.3, skip directly to Section C.4.4 to see how to run SVA. If

you are willing to get into some nitty-gritty, read on.

The difficulty that has been incorporated into both SVA and its

input file is 'row packed' matrix referencing. Row packing is a way

to number the matrix elements so that one number will give you

the location of each element. A simple example is a 4 x 4 matrix;

to reference any elements using row-packed notation, the elements

would be numbered like this:

i 2 3 4

5 6 7 8

9 i0 Ii 12

13 14 15 16

So the 'row-packed location' of element (3,2) is i0. Naturally it

is necessary to know the dimensions of the matrix to properly

specify the location; for instance, the row-packed location of

element (3,2) of a 4x2 matrix is no longer i0, but 6:
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1 2

3 4

5 6

7 8

SVA contains a further clever complication which is useful for

describing the partial-derivative expansion of a parameter, the

entire control system is referenced using 'super-packed' notation.

'Super-packed' can best be described by example. The elements

of A, B, and C for a 3 state, 2 control system are numbered as

follows:

i 2

A= 4 5

7 8

i0 Ii

= 12 13

14 15

= 16 17 18

3

6

9

Obviously this is ridiculous if you're trying to do it by hand,

especially if the matrices are large. That is why the self-

documenting program PRESVA has been provided, to make the

conversions from normal methods of indexing to the above method.

For your application you may need to write a "filter" similar to

CONSVA which utilizes the code in PRESVA to create an input file to

SVA. Just get a listing of PRESVA to see how it works. The

advantages to my indexing technique are very compact, pithy data

files and smaller, more efficient, cleaner code.

Knowing what 'row-packed location' and 'super-packed location'

mean complete the information required to describe the input file to

SVA. In the following, we'll use the notation A [K] to denote the
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row-packed location in a matrix, and A,B,C [K] to denote the super-

packed location of an element in the A, B, or C matrix.

C.4.2 Deflnltloms

Twointeger arrays provide all the necessary information to

specify element-gradients. MI is a four-element array specifying

the Matrices of Interest.

I=i refers to the A matrix
1=2 refers to the B matrix
1=3 refers to the C matrix
1=4 refers to the P matrix, which is described

in References [I] and [8].

If MI(1) = 0, then matrix numberI is not of interest - no gradients

from that matrix are desired. If MI(1) = N, then there are N

elements in matrix numberI for which gradients are desired.

The locations of the elements for which gradients are to be

computed are stored in a 4 row integer array called LES. Each row

of LES corresponds to one of the 4 matrices as described above. For

instance if MI(2)=4 then LES(2,J) for J=l,4 will contain the row-

packed locations in B for which gradients are desired. SVA will

compute the following set of gradients:

do

J=I,MI(1) ;

d A [LES(I,J)]

do

J=I,MI(2);

d B [LES(I,J)]

do

J=I,MI(3); and

d C [LES(I,J)]
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do

d p [LES(I,J)]
J=I,MI(4).

C.4.2.1 Definitions for Partial-Sum Gradients

The organization of the information for partial-sum gradients

is more complicated than for element gradients, because of all the

information that must be provided. It is stored in two arrays, a

two-dimensional real array called FACS and a two-dimensional integer

array called LOCS. Each row of LOCS corresponds to a row in FACS.

The Nth row of both LOCS and FACS gives information about the Nth

partial derivative expansion for which a _-gradient plot will be

computed. We will describe the Nth row.

LOCS(N, 1) contains the number of terms in the partial-derivative

expansion of the gradient of interest, _a/_p. •

Because it is a counter, we'll call LOCS_N,I_ K in the

rest of this description.

LOCS(N,2) through LOCS(N,K+I) contain the super-packed

locations of the elements aij , bij , and cij which make

up the terms of the partial-derlvative expansion of

_2/_p.

FACS(N,I) contains the nominal value of the parameter p.

FACS(N,2) through FACS(N,K+I) contain the coefficients of the

Nth partial derivative expansion. See Section C.I.2;

these are the terms _aij/_p, _bij/_p, and _cij/_p.

using the notation we've set up for super-packing, the equation for

the partial derivative expansion of gradient number N is simply
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3o K 3o

(_pN/PN) = { Z FACS(N,i + i)* }FACS(N,I)
i=l _{A,B,C}[LOCS(N,i + I)]

where K = LOCS(N,I).

(C.19)

C. 4.3 Input Format

These are the contents of an input file to SVA (formats appear

to the right of each line):

I: BATCH (A)

The word BATCH, in caps, fully left-justifled, must appear as
the first line of any data file.

2: TITLE (A)

Any 80-character title must be placed on llne 2.

3: NSM, NC, NSU, NCU, NO, NS, M (715)

NSM = Number of states in the control system

(Dimension of x vector)

NC = Number of controls in the system

(Dimension of u vector)

NSU = Number of states in continuous portion of a sampled-

data system (Dimension of AC; Ignored if DELT = 0.)

NCU = Number of controls in continuous portion of a

sampled-data system (Number of columns in BC;

Ignored if DELT = 0.)

NO, NS, M = Needed only if P-gradients are to be computed;

see References [I] and [8] for descriptions of these
variables.
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4" IPO, ISC, IG (315)

IPO specifies the various printout options:

IPO = i data echo; no plotfile output;

= 2 plotfile output; no data echo;

= 3 data echo and plotfile output;

= 4 same as 3 plus matrix echo.

ISC specifies the various scaling options:

= I unscaled singular values;

= 2 optimally scaled singular values

("structured," frequency dependent scaling);

= 3 user-lnput scaling matrix, D

(see Section 4.2.1).

IG specifies the singluar value for which the analysis is done.

IG --0 or 1

IG = 2

IG --n

minimum singular value;

second-smallest singular value;

nth-smallest singular value.

5: NP, FREQI, FREQ2, DELT (15, 3FI0.5)

NP = Number of logarithmically spaced frequency points at

which to compute the _-plot and o-gradient plots.

FREQI = Initial frequency for the plots.

FREQ2 = Final frequency for the plots.

DELT = Sample time for sampled-data systems. NOTE: DELT

acts as a FLAG for digital systems as well as

describing the sample time. So DELT must be = 0.0

if the system is continuous.
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6: NUMPS (15)

Number of partial-derivative expansions to be input

7 through ?:

For N = I, NUMPS:

a: LABEL (AIO)

Any 10-character label.

FACS(N,I), LOCS(N,I)

FACS(N,I)

LOCS(N,I)

b"

c" (LOCS(N,k+I), k=I,LOCS(N,I))

See Section C.4.2.1.

d: (FACS(N,k+I), k=I,FACS(N,I)) (6E12.6)

See Section C.4.2.1.

(EI0.6,15)

= Nominal value of parameter p

= Number of terms in the Nth partial-derivative

expansion.

(1515)

next 4 lines (1=1,4):

MI(1), (LES(I,J), J=I,MI(1)) (1515)

See Section C.4.2.1 for a description of MI and LES.

Directly after all the above information, the matrices must appear

in the following order (see Section C.3.3 for an explanation of the

format:
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AC matrix NSUx NSU(if DELT.he. 0.0)
BCmatrix NSUx NCU(if DELT.he. 0.0)
A matrix NSMx NSM
B matrix NSMx NC
C matrix NC x NSM
D matrix diagonal elements (1 x NC, unformatted)

The D matrix diagonal elements are only needed if
user-input scaling (ISC = 2) has been specified in

line 4. Note that only the diagonal elements of

the square matrix D are required; see Section

4.2.1 for details on scaling.

This completes the input for one run through SVA. Lines 2-end

may be repeated as many times as desired to produced stacked runs

for batch mode execution.

C.4.4 To Run

SVA can be run using any valid data file, whether it is a

result of CONSVA (Section C.2), PRESVA (Section C.3), or any other

method that conforms to the formats given in this section. The

recommended way to use SVA is as follows:

l) Run SVA in batch mode. This is very simple to do, and for

large systems it is necessary, because runtimes are

relatively long.

2) Look at the SVA output file. This contains a quick summary
of the run.

3) Run SVA interactively to get plots.

For small systems (NSM < about 20) steps 1 and 2 can be skipped.

SVA creates a "plotfile" during the first run (STEP 1). This

file is then simply read in during subsequent runs (STEP 3) so that

the time-consuming computations are only done once. Once the

plotfile has been created, the input file is no longer needed. Step
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3 can be repeated any number of times, so that plots can be viewed

interactively over and over.

Step I

To run SVA in batch mode, type

BATCH +NOTIFY QUEUE=SLOW 'RUNSVA INPUT=inputfile &

OUTPUT=outputfile PLOT=plotfile'

SVA creates a temporary plotfile called SVA.PLOTFILE during hatch

execution. RUNSVA then renames this file to the plotfile name

specified. List out the shellfile RUNSVA to see how this is done.

Step 2

The output file contains a short summary of the results of the

run. The minimum of the a-plot is given, and translated into
m

multiloop gain and phase margins, l_ne normalized gradient
information is then used to make a table of elements in their order

of importance. _lais table gives the following information:

COLUMN I:

A description of the matrix element. This is either in the form

P(i,j) for element gradients (where P = A, B, or C ) or it is the

label specified on input for partial-sum gradients.

COLUMN 2:

The frequency at which a change in the parameter has it's

greatest effect.

COLUMN 3:

The minimum singular value of the return difference matrix at

this frequency.

COLUMN 4:

The normalized singular value gradient, ((a_/ap) • IPl, at the same

frequency.

COLUMN 5:

The percent variation in p (Ap/Ipl*lO0) needed to drive the m-plot

to o = .2 has been chosen as a minimum singular value that would be

undesirable. During interactive runs, this minimum can be changed.
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Step 3

To run SVA interactively, simply type

SVA

at the interactive prompt. The first question asked by SVA is

Type 'P' if this is a plot-only run:

if a plotfile has been created as described in step I, the answer to

this question is 'p'. If you are running a small system and

skipping the batch run, simple type carriage return. You will then

be prompted for an input filename and a plotfile name. If you are

doing a plotfile run, the input file is not necessary and will not

be asked for.

In both plotfile runs and full computation runs, the next output

you will receive is a menu, which is self-explanatory and will not

be explained further here.
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C. 5 Calling SVA as a Subroutine.

For certain applications, calling SVA's main subroutine directly

may be the most advantageous method. This subroutine is called

SVANAL. The following description gives a complete calling sequence

and guide to the input data required by SVANAL. Most of the

information required is exactly the same as the information

described in Section C.4; read Section C.4 before reading on.

subroutine SVANAL performs the following functions:

i. It does an optional echo check of all the input data.

2.

The

.

o

It initializes all matrices and their dimensions. All matrices

must be column-packed for use by this program, so SVANAL creates

the column-packed form of the input matrices. It also creates

the H matrix, which is used by Newsom and Mukhopadyay (see

References [I] and [8]). The user supplies H matrix from the

equation

z = Hx s (C. 20)

where z is the output vector of dimension NO and xs is the state

vector, of dimension NS. SVANAL creates

I o'1
"= L;TcJ (C.21)

where H is the observer matrix defined in Equation (C.19) and I

is an M x M identity matrix. This matrix is only^created if

gradients with respect to controller parameters (P matrix) are

desired (see [I] and [8]). The user can also get a printout of

H if desired.

It calls the subroutine SVCOMP, which handles the calculation of

the singular values and their gradients.

It outputs singular value analysis information in matrix form.

The following information is generated by SVCOMP (and the

subroutines to which it is linked):

a) Minimum singular value and minimum eigenvalue at each

frequency.
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b) Singular value gradients with respect to selected
elements of the system and controller matrices, at each
frequency

C.5.1 Calling Sequence

CALL SVANAL ( ABAR, MA, BBAR, MB, CBAR, MC, H, MH, D, NSM, NC,

NO, NS, M, FREQI, FREQ2, NP, MI, LES, NUMPS, LABELS,

LOCS, FACS, DELT, AC, MAC, BC, MBC, NSU, NCU, IPO,

ISC, LUNI, LUN2, NWKDIM, WK, IWK, SVMAT, MSV )

C.5.2 Input Arguments

ABAR -

MA

BBAR -

MB -

CBAR -

MC -

H m

MH -

Variable dimensioned two-dimensional real array containing

the augmented system matrix, A. A has dimensions (NSM x

NSM). For discrete systems, ABAR must contain the state

transition matrix, ¢.

Maximum first dimension of the array ABAR as given in the

DIMENSION statement of the calling program.

Variable dimensioned two-dlmensional real arEay _ontaining

the augmented control effectiveness matrix, B. B has

dimensions (NSM x NC). For discrete systems, BBAR must

contain the dlscretized control power matrix, F.

Maximum first dimension of the array BBAR as given in the

DIMENSION statement of the calling program.

Variable dimensioned two-dimensional real array containing

the augmented feedback matrix, C. C has dimensions (NC x

NSM).

Maximum first dimension of the array CBAR as given in the

DIMENSION statement of the calling program.

Variable dimensioned two-dimensional real array containing

the augmented observer matrix, H. This matrix is not

required unless gradients with respect to parameters in

are desired, but the variable name must appear in the

call statement.

Maximum first dimension of the array H as given in the

DIMENSION statement of the calling program.
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D - NC x NC scaling matrix (for ISC = 2 option only).

NSM - Dimension of the augmented state-varlable vector.

NC - Dimension of the control vector.

NO - Dimension of the output vector.

NS - State-vector dimension before augmentation.

M - Order of the controller-dynamlcs equation.

NOTE: The variables H, MH, NO, NS, and M must appear in the call

statement to SVANAL, but they do not have to be initialized if

gradients with respect to parameters in P are not desired. NO, NS,

M and NC are consistent with the definitions given in Reference [8].

FREQI - Lowest frequency for the singular value analysis.

FREQ2 - Highest frequency for the singular value analysis.

NP - Number of frequencies between FREQI and FREQ2 inclusive

where singular values, elgenvalues, and gradients are to

be calculated.

MI Integer vector whose dimension is 4. Each entr_ indicates

the number of gradients desired from the A, B, C, and
A

P matrix respectively. This input argument is described
in more detail in Section C.4.2.

LES - Integer array whose first dimension must be 4. Second

dimension must be maXk(Ml(k)). Entry (k,i) indicates the
row-packed location (counting across the rows) in the k-th

matrix (A, B, C, or P) of the parameter with respect to

which a gradient plot is desired. This input argument is
described in more detail in Section C.4.

NUMPS - Number of desired partlal-sum gradients.

LABELS - CHARACTER*IO array with 25 elements. The first NUMPS

elements should contain the labels for the partlal-sum

gradients.

LOCS - Integer array of dimension (25 x i00). Each row contains

information on one of the NUMPS partlal-sum gradients.

The first column tells how many coefficients are in the

partlal-derlvatlve expansion for the gradient. Each

column after the first contains the super-packed location

of the elements of A, B, and C, that are in the

expansion. See Section C.4.2 for more detail.
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FACS - Real array of dimension (25 x I00). Each row contains

information on one of the NUMPS partial-sum gradients.

The first column gives the nominal value for the parameter

with respect to which the gradient is being taken. Each

additional column gives the coefficents of the partial

derivative expansion equation. See Section C.4 for more

detail.

DELT - Sampling interval for sampled-data systems. This variable

must be set to zero for continuous systems.

AC - Variable dimensioned two-dimensional real array containing

the continuous system matrix. AC has dimensions (NSU x

NSU). AC is only used when digital systems are being

analyzed.

MAC - Maximum first dimension of the array AC as given in the

DIMENSION statement of the calling program.

BC - Variable dimensioned two-dimensional real array containing

the continuous control power matrix. BC has dimensions

(NSU x NCU). BC is only used when digital systems are

being analyzed.

MBC - Maximum first dimension of the array BC as given in the

DIMENSION statement of the calling program.

NSU - Dimension of the continuous state-variable vector.

NCU - Dimension of the continuous control vector.

NOTE: The variables AC, MAC, BC, MBC, NSU, and NCU are only

necessary for digital systems. However, the variable names

must always appear in the call statement to SVANAL. MAC and

MBC should be set to i if AC BC are dummy variables, to

insure proper storage allocation.

IPO - Integer variable indicating the type of output desired.

IPO = 0 : All printout suppressed.

IPO = i: Input data echo only. This printout is directed to
logical unit number LUNI.

IPO= 2 : Printout to plotfile only. This printout is

unformatted, and is directed to logical unit number

LUN2. The plotfile is used for plot-only runs by
SVA.
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IPO = 3 : Both input data echo and plotfile information are

printed out to their respective logical unit numbers.

IPO = 4 : Same as IPO=3, except input matrices are also echoed.

ISC - Integer variable indicating the type of scaling desired

ISC = I : unscaled singular values;

= 2 : structured singular values;

LUNI

= 3 : user-input scaling matrix, D (see Section 4.2.1).

Logical unit number for the matrix data echo and error

output. This variable should be set to the LUN of the

terminal.

LUN2 Logical unit number for the data file prlntout. The calling
program must open and initialize the data file

referenced by LUN2.
v

NOTE: LUNI must be initialized to allow error statements. LUN2

need not be initialized if IPO < 2.

NWKDIM - Dimension of the work vector, WK, as given by the

DIMENSION statement of the calling program. NWKDIM must

be approximately

21.NSM 2 + 19.NC 2 + 23.M-N + 31.M + 156

SVANAL informs you of how many elements are actually used,

and gives an error message if NWKDIM is not big enough.

WE I

IWK

real work vector dimensioned at least NWKDIM in the

calling routine.

integer work vector dimensioned at least (2.NC + 2.M +

NSM) in the calling routine.

MSV Maximum first dimension of the array SVMAT as given in

the DIMENSION statement of the calling program. MSV

must be greater than NP.
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C. 5.3 Output Arguments

SVMAT - Two-dimensional array containingall output information.
SVMAT must be dimensioned at least

[NP x (MI(1)+MI(2)+MI(3)+MI(4)+3)]

in the calling routine. Data is organized as follows:

SVMAT(I,I) : frequency, in rad/sec, I=i to NP

SVMAT(I,2) : minimum singular value, I=i to NP

SVMAT(I,3) : minimum eigenvalue, I=I to NP

SVMAT(I,J+3) :

gradients with respect to the

N_PS parameters for which

partial-derivative expansions

were computed J=l to NUMPS

SVMAT(I,J+NUMPS+3) :
gradients with respect to

parameters in the A matrix, J=l to MI(1)
I=I to NP

SVMAT(I,J+NUMPS+MI(1)+3) :

gradients with respect to

parameters in the B matrix, J=l to MI(2)

I=l to NP

SVMAT(I,J+NUMPS+MI(1)+MI(2)+3) :

gradients with respect to

parameters in the C matrix, J=l to MI(3)

I=I to NP

SVMAT(I,J+NUMPS+MI(1)+MI(2)+MI(3)+3) :

gradients with respect to
parameters in the _ matrix, J=l to MI(4)

I=i to NP

SVMAT(I,J+MI(1)+MI(2)+MI(3)+MI(4)+3) :

scaling (D) matrix diagonal elements, included

only if ISC=I, J=l to NC

I=l to NP.
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C. 5.4 CO_qON Blocks

The COMMON blocks employed by SVANAL are:

GRADSTF, SAVE, and PARTIALS

C. 5.5 Error Messages

(I) If the information in LOCS is not consistent with the matrix

dimensions, the following message will be printed:

Bad matrix reference in LOCS:

Check partial derivative expansion equations

(2) If the work array is not large enough, the following message

will be printed:

THE WORK ARRAY IS NOT LARGE ENOUGH IN SVCOMP

THE MAX WORKSPACE IS <Y> AND THE LAST WORK LOCATION IS <X>

<X> is the amount of additional space needed to run the program.

The above two errors are fatal; the program will abort if they

are detected, the following errors will cause slight

discontinuities in the plots, but otherwise will not cause any

problems.

(3) If errors occur within the ORACLS routine SNVDEC, the following

message will be printed:

PASS NO. <X> THERE IS AN ERROR IN CALL TO SNVDEC, IERR = <I> IN
SNGVDI

IERR can be looked up in the ORACLS manual; it usually indicates a

numerical convergence problem.

(4) If (Is-A) is not invertable at some s=j_, the following message

will be _rinted:

SINGULARITY OCCURED IN ISMINA

(5) If the subroutine MAKEUV has numerical difficulties at some

frequency, it will print the message

MAKEUV FAILED TO ANALYZE LW .MATRIX
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These numerical problems can be ignored unless they happen more than
two or three times during a run.

C.5.6 Subroutines Employed by SVANAL

The following subroutines from ORACLS and FRL are employed.

FRL - SVCOMP, ISMINA, SVGRAD, DIGSVG, EXTRACT, DLESELM, MAKEUV,

REALEL, BLKDIAG, PUTMAT

MODIFIED

ORACLS - PRNTI_ LNCNTI, SCALEM, SNVDEC, SYSSLV, SCALEM

MODIFIED

EISPAK - ELTRAN

ORACLS - ADD, NULL, MULT, TRANP, JUXTR, JUXTC, UNITY, EOUATE,

EXPINT, EIGEN, GELIM, ELMHES, BALANC, HQR, DETFAC, SHRSLV,

SCHUR, INVIT, ELMBAK, BALBAK, NORMS, MAXEL_ HSHLDR, BCKMLT

C.5.7 Subroutines Employlng SVANAL

None
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